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Dimethylsulfoniopropionate (DMSP) in marine algae has been hypothesized to serve as a compatible solute
which functions in osmotic acclimation or cryoprotection. However, many macroalgae that produce large
quantities of DMSP live in habitats where they are unlikely to experience large fluctuations in salinities or
freezing temperatures. We hypothesized that DMSP has other functions in these algae and that they should
not show large changes in DMSP concentrations in response to salinity changes. We tested this hypothesis by
placing 1.5 cm? diameter disks of the chlorophyte Ulva fenestrata in artificial seawater (ASW) at salinities
from 10 % ASW to 300 % ASW. Over the next 24 h, DMSP concentrations tended to be lower in the algae in
the higher salinity media. After 4 weeks, the final DMSP concentrations tended to be highest in the algae
grown at the highest salinities, but the mean DMSP concentrations were only 23 % higher or 12 % lower in al-
gae grown in the high and low salinity media, respectively, relative to algae in 100 % ASW. This suggests that
osmotic acclimation is not a primary function of DMSP in U. fenestrata. Disks acclimated in 25 % ASW, 100 %
ASW, or 200 % ASW then transferred to a higher or lower salinity did not generate measurable amounts of
dimethylsulfide (DMS), demonstrating that U. fenestrata is not using DMSP cleavage as a short-term mecha-
nism for reducing internal DMSP stores, as occurs in some phytoplankton. Survival, as measured by the ab-
sence of bleaching, was highest in intermediate to high salinities. Growth was highest in low to intermediate
salinities and reproduction only occurred in intermediate salinities. These results suggest that U. fenestrata can
tolerate salinity changes, but uses metabolites other than DMSP for osmotic acclimation. Based on the results
of this and previous studies, we propose that DMSP has other functions in U. fenestrata such as acting as an
herbivore deterrent or antioxidant.
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Abbreviations: ASW, artificial seawater; DMS, dimethylsulfide; DMSP, dimethylsulfoniopropionate; SNK,
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Introduction

The tertiary sulphonium compound DMSP is a
metabolite that is found in many groups of algae in-
cluding the chlorophytes, rhodophytes, prymnesio-
phytes, dinophytes, diatoms, chrysophytes, and
prasinophytes (Malin and Kirst 1997). DMSP is im-
portant to global sulfur cycling and climate because it
is a precursor to DMS. DMS and acrylic acid are pro-
duced when DMSP is enzymatically cleaved by
DMSP lyase (Cantoni and Anderson 1956). Once re-
leased from algal cells, DMS reacts to form sulfur
dioxides, which can serve as cloud condensation nu-
clei and affect local climate (Charlson et al. 1987).
DMS produced by algae accounts for about half the
biogenic sulfur released into the atmosphere annual-
ly (Andreae 1986, Bates et al. 1992).

Although DMSP’s function in many algal groups
has not been experimentally determined, several
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roles have been suggested. DMSP has been hypothe-
sized to be an osmogulator (Reed 1983a,b, Edwards
et al. 1987, 1988, Kirst 1996), a cryoprotectant
(Karsten et al. 1996), a precursor to an antiherbivore
chemical defense (Wolfe and Steinke 1996, Wolfe
et al. 1997, Van Alstyne et al. 2001, Van Alstyne and
Houser 2003), an antioxidant (Sunda et al. 2002), a
precursor to a potentially allelopathic compound,
acrylic acid (Sieburth 1960), and as part of a system
to expel excess sulfur and energy (Stefels 2000). The
widespread distribution of DMSP suggests that it has
a common function in these algae or that it has multi-
ple functions.

One of the more prevalent suggestions for DMSP’s
function is that it serves as a compatible solute, allow-
ing algae to cope with osmotic changes. Most of the
evidence for DMSP’s role as an osmoregulator in
algae comes from studies of the high intertidal
alga Enteromorpha intestinalis (L.) Nees (Edwards
et al. 1987,1988), the intertidal epiphyte Polysiphonia
lanosa (L.) Tandy (Reed 1983a) and Antarctic



DMSP in Ulva fenestrata 351

species, which may use DMSP for cryoprotection
(Karsten et al. 1992, 1996). E. intestinalis and P.
lanosa live in intertidal habitats where they will expe-
rience large short-term fluctuations in salinities with
changes in tidal levels. These species are also com-
mon in estuarine environments where salinities may
fluctuate over longer time periods. However, many
macroalgae produce comparable quantities of
DMSP but live in environments where salinity fluctu-
ations are not as extreme. In these species, we would
expect that DMSP has a different function in the
alga’s physiology or ecology and that DMSP concen-
trations will not respond to salinity changes as they
do in high intertidal species.

The green alga Ulva fenestrata Postels et Ruprecht
belongs to the same family as Enteromorpha intesti-
nalis and the two species often co-occur on north-
eastern Pacific coasts; however, they differ in their
vertical distribution. E. intestinalis is generally found
in high to mid intertidal habitats and is common in
freshwater seeps whereas U. fenestrata typically oc-
curs in the mid to low intertidal zone (O’Clair and
Lindstrom 2000), where salinity fluctuations are less
extreme. In Washington, USA, both species produce
DMSP; however, DMSP concentrations are about 3
times higher in U. fenestrata than in E. intestinalis
(Van Alstyne et al. 2001). Herbivores that avoid con-
suming U. fenestrata and a related green alga Entero-
morpha linza (L.) J. Ag. also avoid agar-based foods
that contain DMS and acrylic acid (Van Alstyne et al.
2001, Van Alstyne and Houser 2003). Thus, in U. fen-
estrata, the primary function of DMSP may be herbi-
vore deterrence rather than osmotic acclimation.

Because U. fenestrata is found in environments
where salinity fluctuations tend to be low, we hypoth-
esize that DMSP concentrations in this alga will not
be strongly affected by salinity changes. To test this
hypothesis, we conducted both short-term and long-
term experiments in the laboratory to determine the
effects of salinity on DMSP concentrations. We also
determined whether DMS would be produced if U.
fenestrata were subjected to rapid salinity fluctua-
tions.

Material and Methods
Culture methods

Ulva fenestrata was collected during low tides from
the beach in front of the Shannon Point Marine Cen-
ter in Anacortes, WA, USA. Before being used in ex-
periments, the algae were maintained in an incubator
(16:8 light:dark, 12 °C, 43 umol photons m-2s-!) in
100 % ASW that was based on the ESAW recipe of
Harrison et al. (1980) to which the following modifi-
cations were made: (1) molar equivalents of MnCl,
and CoCl, were used in place of MnSO, and CoSO,
respectively, (2) equimolar amounts of KF were used
in place of NaF, and (3) nutrient enrichment stock # 3

(Na,SiO, 9H,0) was omitted. Six additional media
were prepared by adjusting the amounts of the salts
used. To ensure that any differences in responses
were due to salinity differences rather than differ-
ences in nutrient concentrations, we added the same
amount of nutrient enrichment stock solutions (trace
metals and vitamins) to each medium, regardless of
the salinity. The salinities of the experimental media
were 5 PSU (10% ASW), 10 PSU (25% ASW), 19
PSU (50% ASW), 35 PSU (100% ASW), 53 PSU
(150% ASW), 65 PSU (200% ASW), and 95 PSU
(300 % ASW).

Short-term acclimation experiments

To determine if salinity changes could cause short-
term DMSP changes, we cut 1.5 cm? diameter disks of
U. fenestrata and placed them in 8 cm bowls contain-
ing 30 ml of medium. Ten replicate bowls were pre-
pared for each of the seven media types and each
contained 10 to 14 disks of U. fenestrata. One disk of
U. fenestrata was removed from each of the bowls af-
ter 0, 3, 6,12, and 24 h and weighed to obtain a fresh
mass. The disks were dried overnight at 60 °C then
reweighed to obtain a dry mass and placed in either
30 or 50 ml gas-tight vials that each contained 4 ml of
4N NaOH. Previous studies have shown that drying
U. fenestrata (K. Van Alstyne unpubl. data) and other
green algae (Karsten et al. 1994) can increase the
amount of DMSP extracted. The vials were stored at
4°Cin the dark and the concentration of DMS in the
headspace was measured on the next day by direct
injection onto an SRI gas chromatograph (Chromasil
330 column, flame-photometric detector) as de-
scribed in Van Alstyne et al. (2001). Vials containing
known amounts of DMSP were used to generate a
standard curve. After checking the data for equality
of covariance matrices with a Box’s test and equality
of error variances with a Levene’s test, a repeated
measures ANOVA (SPSS 10.0) was conducted with
salinity as a fixed effect. Individual bowls were
treated as experimental units that were sampled
over time. A SNK post hoc test was then used to test
for differences in DMSP concentrations across salini-
ties.

One mechanism that algae could use to rapidly re-
duce internal concentrations of DMSP is to cleave
the molecule into DMS and acrylic acid (Vairava-
murthy et al. 1985). If this mechanism is used to rap-
idly lower DMSP concentrations when algae experi-
ence reduced salinities, then DMS concentrations
should increase as algae are moved to media with
lower salinities but not higher salinities. To test this
hypothesis, we placed 10 disks of U. fenestrata in
25%,100 %, and 200 % ASW (10 replicate bowls for
each treatment). The algae were allowed to acclimate
to these salinities for two weeks. We then removed
three disks from each bowl and placed each into a
25 ml gas-tight flask that contained either 5 ml of
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25%,100 %, or 200 % ASW. After 3 h, we measured
the DMS concentration in the headspace of the
flask as described above. Flasks containing known
amounts of DMS were used as standards.

Bacteria associated with U. fenestrata could have
taken up the DMS produced during the acclimation
experiments, making any DMS production resulting
from osmoacclimation difficult to detect. To deter-
mine if U. fenestrata and its associated bacterial flora
caused significant losses of DMS, we incubated
40 gas-tight 30 ml vials containing 100 % ASW and 0,
5,10, or 20 pg of DMS with and without disks of U.
fenestrata (N = 5). After 3 h, the DMS concentrations
in the vials’ headspaces were measured with gas
chromatography. An analysis of covariance was used
to test for a difference in vials with and without U.
fenestrata after the data were checked for homogene-
ity of variances with a Levene’s test (SPSS 10.0).

Long-term acclimation experiments

To determine if salinity changes cause longer-term
changes in the growth, survivorship, reproduction,
and DMSP concentrations of U. fenestrata, we placed
10 to 14 disks of U. fenestrata in 8 cm bowls as de-
scribed above. The medium was replaced twice a
week. At weekly intervals for 4 weeks, we deter-
mined the number of disks in each bowl that were
bleached and the number of bowls containing spores.
A disk was considered bleached if more than half its
surface area was noticeably white to very light green
in color. Although spore release caused localized
bleaching in some disks, it was never greater than
50% of the surface area; therefore, disks releasing
spores were never tallied as bleached. At each sam-
pling interval, we randomly selected one disk from
each bowl, photographed it with a digital camera, and
measured its surface area on a personal computer
with Image]J software (NIH: http://rsb.info.nih.gov/ij/
index.html). The disk was then weighed to obtain a
fresh mass, dried, then reweighed to obtain a dry
mass and placed in a gas-tight vial with 4N NaOH.
Headspace DMS concentrations were measured as
described above.

The DMSP concentration, dry mass, and fresh
mass data were analyzed with a repeated measures
multivariate ANOVA that was similar to the analysis
described for the short-term experiments. Variances
were significantly different among treatment groups
(Box’s Test, p < 0.05) and tended to increase over
time. Therefore, the Pillai-Bartlett V statistic was
used because it is robust to moderate heteroscedas-
ticity when the design is balanced or nearly so (John-
son and Field 1993). The surface area data were ana-
lyzed with a two-way ANOVA with salinity and time
as fixed factors. A Levene’s test for homoscedasticity
(SPSS 10.0) was significant (p < 0.05) and we were
unable to transform the data so that the variances
were equal. However, ANOVA is robust to het-

eroscedasticity for relatively large balanced data sets
(Underwood 1997).

Results

In the short-term experiment, DMSP concentrations
decreased significantly among Ulva fenestrata disks
over time (Fig. 1; repeated measures ANOVA: Pillai-
Bartlett V = 0.855, F = 82.233, df = 4, error df = 56,
p < 0.001) and among disks grown in different salini-
ties (repeated measures ANOVA: salinity effect F =
20.091,df = 6, error df =59, p < 0.001). DMSP concen-
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Fig. 1. Short-term changes in DMSP concentrations in
Ulva fenestrata maintained in artificial seawater (ASW) at
seven different salinities. Data are means + 1 SE (N = 10).
DMSP concentrations in disks grown in media with the
same subscripts are not significantly different (SNK post
hoc test,a = 0.05).
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Fig. 2. Long-term changes in DMSP concentrations in
Ulva fenestrata maintained in artificial seawater (ASW) at
seven different salinities. Data are means + 1 SE (N = 10).
DMSP concentrations in disks grown in media with the
same subscripts are not significantly different (SNK post
hoc test,a = 0.05).
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trations tended to decrease with increasing salinity
(Fig. 1). Thus, the directions of the DMSP changes
were the opposite of those predicted.

U. fenestrata showed no evidence of cleaving
DMSP into DMS and acrylic acid to reduce internal
DMSP stores over short periods. None of the algae
that were acclimated to 25 % ASW, 100 % ASW, and
200 % ASW and transferred to the same or another
medium produced measurable amounts of DMS.
The minimum amount of DMS that would be de-
tectable using our methods was 2.5 pg or approxi-
mately 2.25 % of the amount of DMS that could be
produced by the alga. The lack of an acclimation ef-
fect did not appear to be caused by bacteria associat-
ed with U. fenestrata. When algae were incubated in
the presence of DMS, there was a significant DMS
loss, relative to controls without algae (analysis of co-
variance: algal effect F = 194.00,p < 0.001,df =1, error
df = 37), suggesting that bacteria associated with
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Fig. 3. Fresh masses and surface areas of Ulva fenestrata
maintained in artificial seawater (ASW) at seven different
salinities. Data are means + 1 SE (N = 10). Masses or sur-
face areas in disks grown in media with the same subscripts
are not significantly different (SNK post hoc test,a = 0.05).
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Fig. 4. Bleaching of Ulva fenestrata disks maintained in ar-
tificial seawater (ASW) at seven different salinities over a
4-week period. Data are means of percentages of disks in
each dish that were visibly bleached over half their surface
area (+ 1 SE). Lines below the x-axis indicate treatments in
which the percentages of bleached disks are not significant-
ly different (SNK post hoc test: p > 0.05).

U. fenestrata may be metabolizing some DMS. The
mean amounts of DMS (+ 1 SE,N =5) in the vials con-
taining U. fenestrata were 46.1+24.2 %, 44.7+8.6 %
and 53.8+4.3% lower than in vials lacking algae
when 5, 10, and 20 pg, respectively, of DMS were
added. However, even when only 5 ug was added to
the vials, the DMS concentration after 3 h was still
large enough to be measurable with gas chromatogra-
phy, suggesting the lack of measurable DMS in the ac-
climation experiment was due to a lack of DMS pro-
duction.

In the long-term acclimation experiments, salinity
had a significant effect on algal growth and DMSP
production (Figs 2, 3; repeated measures MANOVA:
Pillai-Bartlett V = 1.713, F = 13.981, df = 18, error
df = 189, p < 0.001). At the end of four weeks, mean
DMSP concentrations were positively correlated
with salinity (Pearson correlation coefficient = 0.911,
P =0.004). However, the lowest mean DMSP concen-
trations occurred in algae from 10 % ASW and were
only about 12% lower than DMSP concentrations
than in algae grown in 100% ASW. Likewise, the
highest increases occurred in the algae grown in
200 % ASW medium and were only about 23 % high-
er than concentrations in the 100 % ASW controls.

Bleaching rates differed among algae grown in dif-
ferent salinities (Fig. 4; repeated measures ANOVA:
F = 14.434, df = 6, error df = 63, p < 0.001) and in-
creased over time (repeated measures ANOVA: Pil-
lai-Bartlett V = 0.489,F = 19.419, df = 3, error df = 61,
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Fig. 5. Spore production by Ulva fenestrata disks main-
tained in artificial seawater (ASW) at seven different salin-
ities over a 4-week period. Data are percentages of dishes
that contained visible spores.

p < 0.001). Bleaching was significantly higher in the
10% ASW and 25% ASW media than in all others
(SNK test: p < 0.05) and increased rapidly between
weeks 2 and 3 (Fig. 4). Growth, measured as both sur-
face area and fresh mass, was highest in the interme-
diate salinities (Fig. 3). Growth rates were significant-
ly lower in the 10% ASW, 200 % ASW and 300 %
ASW media than in the 50 % and 100 % ASW media
(SNK test: p < 0.05). Reproduction was limited to al-
gae in intermediate salinities (Fig. 5). Only algae in
50% ASW, 100% ASW, and 150 % SW media pro-
duced visible spores and the percentage of dishes in
which spores were produced were comparable across
the three media. Spores were detectable in some
dishes within a week and continued to be produced
until the end of the experiment.

Discussion

DMSP concentrations in Ulva fenestrata were posi-
tively correlated with increased salinity in the long-
term acclimation experiments but showed the oppo-
site pattern in the short-term experiments (Figs 1,2).
Because the magnitude of the effect was small rela-
tive to the salinity change in the long-term experi-
ment, we question whether DMSP has a significant
role in osmotic acclimation in this alga. In previous
studies with Enteromorpha intestinalis, DMSP con-
centrations were over twice as high in algae grown in
hypersaline media relative to control media (Ed-
wards et al. 1988). In studies with polar macrophytes,
internal DMSP concentrations increased by as much

as two-fold within 72 h of salinity increases (Karsten
etal. 1992). However DMSP concentrations in U. fen-
estrata only increased by 23% in the hypersaline
medium relative to the control medium in the long-
term experiments (Fig. 2). The lower DMSP concen-
trations in the algae grown in 10% and 25% ASW,
particularly during the 3" and 4% weeks, may have
been due to some of the algae being very stressed.
Several of the algae in each of these samples were
pale green in color over enough of their surface areas
to be categorized as bleached.

The lack of a measurable DMS release when accli-
mated algae were transferred from a high to a low
salinity medium provides further evidence that short-
term osmotic acclimation is not an important func-
tion of DMSP in U. fenestrata. Although some os-
molytes can remain within the apoplast or cell wall
compartment and be difficult to detect, this is unlike-
ly to happen with DMS because of its high volatility.
In the planktonic prymnesiophyte Hymenomonas
carterae (Braarud and Fagerland) Manton et Peterfi,
a species that is thought to use DMSP for osmotic ac-
climation, DMSP concentrations increased when al-
gae were acclimated to higher salinities (Vairava-
murthy et al. 1985). When the cells were then
transferred to a lower salinity medium, DMS was re-
leased to lower internal stores of DMSP. When we
transferred U. fenestrata to a lower salinity medium,
no such release occurred.

In both the long-term and short-term experiments,
DMSP concentrations decreased over time, inde-
pendently of the salinity treatments (Figs 1,2). These
decreases may have resulted from moving field-col-
lected algae into incubators with lower light levels.
DMSP concentrations in macroalgae can be affected
by light (Karsten et al. 1991, 1992). In Ulva rigida C.
Ag., DMSP concentrations can be 60 % lower in al-
gae maintained at low light intensities relative to
those grown in high intensities (Karsten et al. 1991).
This range is comparable to the decrease we ob-
served in our experiments.

In its natural environment, some U. fenestrata indi-
viduals may experience gradual or abrupt changes in
salinity. Our data show that it can persist in hypo-
saline or hypersaline waters for up to a month with re-
production occurring within a more limited range of
salt concentrations. Consequently, U. fenestrata must
have a physiological mechanism for coping with hy-
posaline or hypersaline conditions. However, our re-
sults suggest that DMSP is not the major metabolite
used for osmoacclimation. Many other osmolytes are
known from marine plants, including alcohols, simple
sugars, amino acids, and methylated compounds such
as methylamines and betaines (summarized in Ed-
wards et al. 1987). In Enteromorpha intestinalis, pro-
line increases dramatically during both short-term
(48 h) and long-term (35 days) acclimation (Edwards
et al. 1987). Sucrose is also used to osmoregulate over
short time scales, but not over longer ones in E. in-



DMSP in Ulva fenestrata 355

testinalis, whereas DMSP is used to adapt to long-
term, but not short-term, salinity changes (Edwards
et al. 1987). Thus, U. fenestrata may be using other os-
molytes, such as proline and sucrose, to deal with os-
motic stresses.

DMSP concentrations in U. fenestrata are typically
three to five percent of the alga’s dry mass (Van Al-
styne et al. 2001, Van Alstyne and Houser 2003). This
large investment in a single compound suggests that
DMSP plays an important role in the physiology or
ecology of the alga. However, the lack of a significant
increase in DMSP during large changes in salinity
suggests that osmotic acclimation in U. fenestrata is,
at best, a minor function of DMSP. There is more sup-
port for other roles for DMSP in U. fenestrata, partic-
ularly herbivore deterrence or protection from oxi-
dation. In multiple choice feeding preference assays,
U. fenestrata was among the least preferred foods of
several herbivores including the green sea urchin
Strongylocentrotus droebachiensis [Miiller] (Van
Alstyne and Houser 2003), the purple sea urchin
Strongylocentrotus purpuratus [Stimpson] (Kirby
and Van Alstyne unpubl. data), and the gastropod
snail Lacuna vincta [Montagu] (Kirby and Van Al-
styne unpubl. data). Two of the products of DMSP
cleavage, DMS and acrylic acid, have been shown to
deter feeding by S. droebachiensis, and acrylic acid is
also a feeding inhibitor to S. purpuratus (Van Alstyne
et al. 2001, Van Alstyne and Houser 2003). It should
be noted that many herbivores prefer to eat U. fenes-
trata (Kirby and Van Alstyne unpubl. data) and that
feeding by one of these herbivores, the isopod Idotea
wosnesenskii [Brandt], is not affected by acrylic acid
(Van Alstyne et al. 2001). Thus, DMSP only seems to
be an effective defense against specific herbivores.
DMSP concentrations are also higher in U. fenestrata
(Van Alstyne and Nelson in prep.) and other
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