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Abstract In this study, we present evidence that the inva-
sive alga Codium fragile ssp. tomentosoides is chemically
defended against grazing by a wound-activated chemical
defense involving dimethylsulfoniopropionate (DMSP) and
the products of its cleavage, dimethylsulWde (DMS), and
acrylic acid (AA). DMSP in C. fragile ssp. tomentosoides
was present throughout the year, but concentrations varied
seasonally and were highest in the winter. Intra-thallus var-
iation was neither large, nor consistent over time. High
DMSP concentrations were uncommon among northwest-
ern Atlantic macrophytes. Of 26 other species tested, only
two, Ulva lactuca and Polysiphonia harveyi contained con-
centrations comparable to, or higher than, those of C. frag-
ile ssp. tomentosoides. DMS and AA, both individually and
together, deterred grazing by the green sea urchin Strongy-
locentrotus droebachiensis at “natural” concentrations.
These results suggest that DMS and AA contribute to the
avoidance of C. fragile ssp. tomentosoides by S. droebachi-
ensis. As a result, the production of DMSP and its subse-
quent cleavage, upon injury, may reduce herbivory on
C. fragile ssp. tomentosoides and contribute to its success.

Introduction

Codium fragile ssp. tomentosoides is one of the world’s
most widespread invasive algal species, having spread from
Japan to the shores of Europe, Australia, New Zealand, and
North and South America over the past century (Silva
1955; Bouck and Morgan 1957; Dromgoole 1975; Trow-
bridge 1999; Castilla et al. 2005). The dramatic success of
C. fragile ssp. tomentosoides has been attributed to aspects
of the alga’s ecophysiology and life history, its association
with human activities such as shipping and aquaculture,
and characteristics of invaded communities (reviewed by
Trowbridge 1998). In the Northwest Atlantic, where C.
fragile ssp. tomentosoides has been particularly successful,
a combination of biological disturbance and facilitation is
believed to have played an important role. Urchin mass
mortality combined with defoliation of kelp by the invasive
bryozoan Membranipora membranacea have provided C.
fragile ssp. tomentosoides with opportunities to colonize,
expand, and competitively exclude other macrophytes in
former urchin barrens and kelp beds in the rocky subtidal
zone (Harris and Tyrell 2001; Chapman et al. 2002; Levin
et al. 2002; Scheibling and Gagnon 2006).

Many exotic plants are suppressed by native herbivores,
particularly generalists (Parker et al. 2006). Although C.
fragile is susceptible to some saccoglossan sea slugs that are
specialized to feed upon it (Trowbridge 1995, 2004), the
alga is generally a low preference food among generalist
herbivores (Trowbridge 1998). In the northwest Atlantic, the
green sea urchin Strongylocentrotus droebachiensis and the
gastropod Lacuna vincta prefer Laminaria spp. and turf
algae over C. fragile ssp. tomentosoides. This is likely to
reinforce the shift from kelp beds to meadows of C. fragile
ssp. tomentosoides (Scheibling and Anthony 2001; Levin
et al. 2002; Sumi and Scheibling 2005). While the speciWc

Communicated by R.J. Thompson.

D. A. Lyons (&) · R. E. Scheibling
Department of Biology, Dalhousie University, 
Halifax, NS, Canada B3H 4J1
e-mail: dalyons@dal.ca

K. L. Van Alstyne
Shannon Point Marine Center, Western Washington University, 
1900 Shannon Point Road, Anacortes, WA 98221, USA
123



180 Mar Biol (2007) 153:179–188
reasons why herbivores avoid the alga have not been identi-
Wed, it has been suggested that odourous volatile compounds
may be involved (Trowbridge 1998). One such chemical is
dimethylsulfoniopropionate (DMSP), a methionine-derived
natural product found in many macroalgae (Van Alstyne and
Puglisi 2007), including C. fragile and other Codium spp.
(Van Alstyne et al. 2001; K. L. Van Alstyne, unpublished
data). DMSP can serve as the precursor of an activated anti-
grazing defense in some macroalgae (Van Alstyne et al.
2001; Van Alstyne and Houser 2003). Both acrylic acid
(AA) and dimethylsulWde (DMS), the products of DMSP-
cleavage, deter grazing by S. droebachiensis (Van Alstyne
et al. 2001; Van Alstyne and Houser 2003).

In this study, we examine the potential role of DMSP
and associated compounds in protecting C. fragile ssp.
tomentosoides against grazing. We show that DMSP is
present in C. fragile ssp. tomentosoides in Nova Scotia, but
is undetectable or in very low concentrations in most co-
occurring macrophytes. We examine both seasonal and
intra-thallus variation in DMSP concentration in C. fragile
ssp. tomentosoides. Finally, we demonstrate that AA and
DMS deter grazing by S. droebachiensis at concentrations
that are ecologically relevant for C. fragile ssp. tomentoso-
ides in Nova Scotia.

Materials and methods

DMSP concentrations in C. fragile ssp tomentosoides and 
other northwest Atlantic species

Codium fragile ssp. tomentosoides was collected from the
shallow subtidal zone at Birchy Head (44°35�N, 64°03�W;
September 2004, March 2005, May 2005, February 2006),
Cranberry Cove (44°28�N, 63°56�W; November 2004),
Sandy Cove (44°27�N, 63°42�W; July 2005), and The
Lodge (44°33�N, 64°01�W; October 2005), Nova Scotia,
Canada. To monitor seasonal variation in DMSP concentra-
tions, tip samples from the distal end of the thallus were
taken from at least 20 individuals from each collection. To
compare DMSP concentrations in diVerent parts of the
frond, branch samples from the area between the second
and third bifurcation and stipe samples, which included the
holdfast and the section of stipe directly above it, were
sampled in November 2004 (n = 23) and March 2005
(n = 19). In July 2005, only tips and branches were sam-
pled. Samples of 25 other macroalgal species (n = 1–3) and
one marine vascular plant (n = 3) were collected from the
subtidal zone in February 2006 at Birchy Head, Cranberry
Cove, The Lodge, and Paddy’s Head (44°31�N, 63°57�W),
Nova Scotia, Canada.

Algal and plant samples were gently shaken to remove
excess water, weighed, dried at 60°C for 24 h, and

reweighed to calculate a dry-to-wet mass ratio. The dried
samples were then sent by overnight courier to the Shannon
Point Marine Center (SPMC) in Anacortes, WA, USA for
DMSP analysis. DMSP was measured as DMS following
alkaline cleavage in 4 N NaOH by injecting 10 �l head-
space samples onto a Chromosil 330 column (oven temper-
ature: 90°C) in an SRI gas chromatograph equipped with a
Xame photometric detector (detector temperature: 125°C).
DMSP standard additions with commercially obtained
DMSP (Center for Analysis, Spectroscopy and Synthesis,
University of Groningen; purity >98%) added to equal vol-
umes of NaOH were used to generate standard curves. The
detection limit of the analysis was 12.5 �g DMSP. The dry-
to-wet mass ratio was then used to determine the concentra-
tion of DMSP in terms of the % fresh mass (FM). Previous
studies with other species of green macroalgae have shown
that oven-drying the samples prior to extracting them in
NaOH increases the amount of DMSP extracted and that
dried samples can be stored for at least a month without
loss of the compound (K. L. Van Alstyne, unpublished
data; Karsten et al. 1994).

Feeding assays

Because of regulatory restrictions on importing exotic
invertebrates to Washington and the lack of facilities for
measuring DMS at Dalhousie University, we tested the
eVects of AA and DMS on S. droebachiensis from Wash-
ington, rather than Nova Scotia. Small adult (35 § 2 mm
SD test diameter) urchins were collected by hand from For-
bes Point, Whidbey Island, WA, USA (48°16�N, 122°38�W)
at about 0.3 m depth during a low tide in August 2005.
Urchins were kept in Xow-through sea water tables at the
SPMC and were not fed macroalgae for 1 month prior to
beginning feeding assays. Urchins used in multiple experi-
ments were maintained without food for a minimum of
1 day between assays.

Seaweed-based artiWcial foods were prepared to test the
eVects of AA and DMS on urchin feeding behavior. The
concentrations tested were based on those observed in the
Nova Scotia C. fragile ssp. tomentosoides population (see
Results), assuming complete conversion of DMSP into AA
and DMS. In experiments with foods that contained both
AA and DMS, we attempted to use ratios of DMS to AA
that assumed that DMSP cleavage results in a »1:1 ratio of
DMS (MW 72) to AA (MW 62), although the volatility of
DMS made this diYcult (see below). To create artiWcial
diets, 46.5 ml of de-ionized water was mixed with 1.5 g of
high gel strength agar and microwaved for 45 s. After the
mixture cooled to 40°C, 2.0 g of freeze-dried, ground Sac-
charina latissima (=Laminaria saccharina) and AA (Ald-
rich, anhydrous, 99%) and/or DMS (Aldrich, anhydrous,
99%) were added. This amount of S. latissima was chosen
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in order to create artiWcial foods that roughly mimicked (in
terms of energy) the nutritional value of C. fragile ssp.
tomentosoides. The use of S. latissima, which is attractive
to sea urchins (Van Alstyne and Houser 2003; Van Alstyne
et al. 2006), in place of C. fragile ssp. tomentosoides
increased the likelihood that urchins would feed on the arti-
Wcial foods. This may make our tests of the eVect of the
defensive compounds slightly more conservative than if C.
fragile ssp. tomentosoides had been used. Control diets
were prepared using the same method, except they lacked
AA and DMS.

The agar-based food was then poured onto a glass plate
evenly sprinkled with 3 g of clean beach sand, which made
the food negatively buoyant. The mixture was then pressed
Xat with a second glass plate, separated from the Wrst by
3 mm spacers. Once the agar had set (»1 min), the food
was cut into pieces using “punches” made from short
lengths of circular or square pipe, »1.5 cm across. To dis-
tinguish between treatment and control foods in the choice
experiments, the food shape was assigned systematically,
such that the treatment food would be circular in one
experiment, and square the next. In the no-choice experi-
ment, all foods were circular. Preliminary experiments
indicated that urchins exhibited no preference for circular
or square foods and that food pieces exhibited very little
autogenic mass change (average weight change: +0.01 §
0.01 g SD).

Due to the volatility of DMS, it was diYcult to predict
the concentration that would be present in food at the start
of the experiment. In order to determine the concentration
of DMS at the start of an experiment, three pieces of treat-
ment food were placed into 4 N NaOH in gas-tight vials at
the same time that the food was Wrst being oVered to the
urchins. DMS content was analyzed as described above.

Feeding bioassays were conducted in circular plastic
containers (20 cm diameter) with Xow-through seawater
(10°C). Individual urchins were placed in each container
and provided with a food or choice of foods. The amount of
food consumed was determined as the diVerence between
the estimated initial mass of the food (circles:
1.01 § 0.02 g SD; squares: 0.96 § 0.02 g SD) and the
actual mass of food remaining at the end of the experiment.
Estimates of the initial masses were used to reduce the time
between preparing the foods and introducing them to the
urchins so that DMS evaporation from the foods would be
kept to a minimum.

Choice experiments

The eVect of three concentrations of AA, four concentra-
tions of DMS, and nine combinations of AA and DMS
were tested in choice experiments. In each experiment, a
single urchin in each container was placed in contact with

two artiWcial foods that were placed next to each other in
the center of the container: a food containing AA, DMS, or
both AA and DMS, and a control food. Urchins were
allowed to feed for 4 h.

Because DMS is very volatile and can evaporate or
diVuse from foods during the course of an experiment (Van
Alstyne and Houser 2003), we assessed its loss during two
experiments (0.02% AA and 0.007% DMS versus Control,
0.04% AA and 0.028% DMS versus Control). Extra pieces
of treatment food were placed into containers without
urchins. Two to three pieces were removed from the con-
tainers and placed into gas-tight vials after 0.5, 1, 2, and
4 h. These samples were analyzed for DMS, as described
above. During these two experiments we also monitored the
position of each urchin relative to the two food types. The
number of urchins contacting each food after 0.5, 1, 2, and
4 h was recorded.

No-choice experiment

Nine urchins were randomly assigned to each of seven diet
groups containing diVerent concentrations of AA and DMS
(ranging from 0% AA and 0% DMS to 0.10% AA and
0.11% DMS). Each of the 63 urchins was placed in a con-
tainer and provided with a single piece of artiWcial food
corresponding to its diet group and allowed to feed for 3 h.
One replicate food from the treatment containing 0.02%
AA and 0.035% DMS was mislaid upon collection, and
thus excluded from analysis.

Statistical analyses

The concentration of DMSP in tips of C. fragile ssp.
tomentosoides in the diVerent months was compared by
one-way ANOVA. The concentration of DMSP in diVerent
parts of the thallus in November 2004 and March 2005 was
compared by two-way ANOVA with individual as a ran-
dom (blocking) factor. Multiple comparisons were then
conducted with a Tukey HSD test. The DMSP concentra-
tions in paired tip and branch samples collected in July
2005 were compared with a paired t-test. According to sta-
tistical theory percentages, such as our DMSP concentra-
tions, form a binomial, rather than a normal distribution. As
a result, the arcsine transformation (Zar 1999) was applied
to all DMSP concentration data prior to analyses so that
they would approximate a normal distribution. For the no-
choice experiment, the mass of food consumed by the
urchins in each group was compared by one-way ANOVA.
Levene’s test was used to conWrm that the data used in
ANOVA conformed to the assumption of homogeneity of
variance (P > 0.39). The masses of treatment and control
foods consumed in the choice experiments were compared
with two-tailed, paired t-tests.
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Results

DMSP concentrations in C. fragile ssp. tomentosoides 
and other macrophyte species

Dimethylsulfoniopropionate concentrations in individual
thalli of C. fragile ssp. tomentosoides ranged from 0.03 to
0.18% FM. Tips exhibited distinct variation in DMSP con-
tent (Fig. 1; F6,145 = 87.7, P < 0.001). Average DMSP
concentrations were lowest in boreal fall (September–
November; 0.04-0.05%) but underwent a marked increase
in winter, reaching a peak of 0.13% in March. Concentra-
tions then declined gradually through the spring and
summer.

The concentration of DMSP in diVerent parts of the thal-
lus (Fig. 2) diVered signiWcantly in both November 2004
(F2,44 = 7.96, P = 0.001) and March 2005 (F2,36 = 15.7,
P < 0.001). However, the pattern of diVerences was not the
same in both months. In November 2004, branches con-
tained less DMSP than stipes and tips, which were not sig-
niWcantly diVerent (Tukey HSD, P < 0.05). In contrast,
stipes contained signiWcantly less DMSP than branches and
tips in March 2005. In July 2005 there was no signiWcant
diVerence between the tips and the branches (t19 = 1.68,
P = 0.11).

Substantial concentrations of DMSP were detected in
Ulva lactuca and Polysiphonia harveyi, with both species
containing more DMSP (0.78 and 0.19%, respectively;
Table 1) than C. fragile collected at the same time (0.10%;
Fig. 1). Low concentrations (·0.01%) of DMSP were
detected in seven other species and no DMSP was detected
in the remaining 17 species (Table 1).

Choice experiments: individual chemicals versus control

Urchins provided with a choice between a food containing
0.08% AA and a control consumed signiWcantly less of the
treated foods (Fig. 3a), while there was not a signiWcant
diVerence between consumption on food containing 0.02 or
0.04% AA and control foods. Urchins provided with a
choice between a food containing 0.009, 0.020, or 0.034%
DMS and a control consumed signiWcantly less of the
treated food (Fig. 3b). There was no signiWcant deterrent
eVect of DMS at the lowest concentration tested (0.006%).

Choice experiments: AA and DMS versus control

The presence of both AA and DMS in treatment foods
tended to discourage urchin feeding. Urchins consumed

Fig. 1 Seasonal variation of DMSP concentration (% fresh mass §1
SD) in the branch tips of Codium fragile ssp. tomentosoides collected
between September 2004 and February 2006. Points with diVerent let-
ters are signiWcantly diVerent from one another (Tukey’s HSD,
P < 0.05)
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signiWcantly less treatment food than control in Wve of nine
experiments (Fig. 4). In three other experiments, urchins
consumed less treatment than control food though these
diVerences were not statistically signiWcant. In the one
experiment where more of the treatment food was eaten
(0.04% AA and 0.051% DMS versus Control), this diVer-
ence was not statistically signiWcant.

We noticed a tendency for urchins to avoid the treated
foods at the beginning of an experiment, often crawling
away from them, or pushing them away with their tube feet.
However, at the end of the experiment, the same urchins
were often on top of and consuming the treatment foods.
The number of urchins in contact with treatment and con-
trol foods was recorded during two of these experiments

(0.02% AA and 0.007% DMS versus Control and 0.04%
AA and 0.028% DMS versus Control; Fig. 5a). At the
beginning of the experiments, 100% of urchins were placed

Table 1 Mean DMSP (§1 SD) concentrations in marine macroalgae
and one marine plant from Nova Scotia in February 2006

nd DMSP was not detectable, FM fresh mass

Species n % DMSP (FM)

Chlorophyta

Chaetomorpha linum 3 nd

Chaetomorpha melagonium 3 nd

Codium fragile 20 0.10 § 0.01

Spongomorpha aeruginosa 3 nd

Ulva lactuca 3 0.78 § 0.07

Rhodophyta

Ahnfeltia plicata 3 nd

Antihamnionella Xoccosa 3 0.002 § 0.004

Ceramium rubum 3 nd

Chondrus crispus 3 0.001 § 0.002

Corallina oYcinalis 3 nd

Palmaria palmata 2 nd

Phycodrys rubens 2 nd

Polyides rotundus 3 nd

Polysiphonia harveyi 3 0.19 § 0.14

Ptilota serrata 3 nd

Rhodomela confervoides 2 0.011 § 0.0003

Phaeophyta

Agarum clathratum 3 0.01 § 0.01

Alaria esculenta 3 nd

Ascophyllum nodosum 3 nd

Desmarestia aculeata 3 nd

Desmarestia viridis 2 nd

Fucus distichus 3 0.002 § 0.003

Fucus vesiculosus 3 0.010 § 0.004

Halosiphon tomentosus 1 nd

Laminaria digitata 3 nd

Saccharina longicrurus 
(=Laminaria longicruris)

3 nd

Magnoliophyta

Zostera marina 3 0.01 § 0.01

Fig. 3 Mean mass (§SE) consumed by Strongylocentrotus droeba-
chiensis given a choice between agar-based foods containing a acrylic
acid or b dimethylsulWde, and a control. Asterisks indicate experiments
in which consumption diVered signiWcantly between treatments
(paired t-test, *0.01 < P · 0.05, **0.001 < P · 0.01)
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in contact with both foods (Fig. 5b). After 0.5 h, the per-
centage of urchins contacting the control food had dropped
slightly to 85% and then remained relatively stable over the
Wrst 3 h before falling to 57% at the end of the 4–h experi-
ment. In contrast, the percentage of urchins contacting the
treatment food dropped to 38% after 0.5 h, and then gradu-
ally increased to 59% after 3 h, before dropping slightly to
47% at the end of the experiment.

Over the course of each feeding experiment, signiWcant
amounts of DMS were lost from treatment foods (Fig. 5a).
Treatment foods lost about half of the DMS within 0.5 h,
about 75% within 2 h, and more than 90% at the end of the
4-h experiments.

No-choice experiment

There was no signiWcant eVect of AA and DMS on the
amount of food consumed by the urchins over concentra-
tions ranging from no AA or DMS to 0.10% AA and 0.11%
DMS (Fig. 6; F6,55 = 0.91, P = 0.49).

Discussion

DMSP variation in Codium fragile ssp. tomentosoides

Our results demonstrate that the population of C. fragile
ssp. tomentosoides in Nova Scotia undergoes substantial

temporal variation in DMSP concentration, with concentra-
tions peaking during winter and then decreasing through to
the fall. During winter, many large thalli of C. fragile ssp.
tomentosoides die back and undergo marked morphologi-
cal/physiological changes, including loss of utricle hairs, a
darkened thallus (Benson et al. 1983), and increased frag-
mentation (Fralick and Mathieson 1972). It is also during
this period that water temperatures can fall below 0°C.

Similar temporal variation in secondary metabolite con-
centrations have been found in Australasia, where phenolic
levels in brown algae tend to peak in spring (Steinberg and
Van Altena 1992), and in the Mediterranean, where caul-
erpenyne concentrations in Caulerpa taxifolia peak in
autumn (Dumay et al. 2002). Some natural products and
morphological changes in macroalgae are induced in
response to herbivory (Van Alstyne 1988; Yates and Peckol
1993; Cronin and Hay 1996a; Pavia and Toth 2000; Taylor
et al. 2002; Macaya et al. 2005), or change in response to
environmental factors such as temperature (Amade and
Lemee 1998; Dethier et al. 2005), nutrients (Van Donk and
Hessen 1993; Van Donk et al. 1997), UV radiation (Van
Donk and Hessen 1995; Pavia et al. 1997), or desiccation
(Renaud et al. 1990; Cronin and Hay 1996b; Ross and Van
Alstyne 2007).

The causes of seasonal variation in DMSP concentra-
tions in C. fragile ssp. tomentosoides in Nova Scotia are not
clear. A variety of environmental factors are known aVect
DMSP concentrations. For example, in several Antarctic
and temperate algae, they can change in response to
changes in irradiance and salinity (Karsten et al. 1992).
However, these eVects are not universal. Experimental
manipulations of salinity, light quantity and quality, nitrogen

Fig. 5 a Percentage (§SE) of dimethylsulWde (DMS) remaining in
treatment foods in 0.02% acrylic acid/0.007% DMS and 0.04% acrylic
acid/0.028% DMS experiments. b percentage (§SE) of Strongylocen-
trotus droebachiensis contacting control and treatment foods during
the course of the same experiments
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availability, and herbivory failed to inXuence DMSP pro-
duction by U. lactuca (Van Alstyne et al. 2003, 2007). Our
ongoing work suggests that DMSP concentration in C.
fragile ssp. tomentosoides correlates strongly with water
temperature (D. A. Lyons, unpublished data). In addition to
acting as a feeding deterrent, it has been suggested that
DMSP may function as an anti-oxidant (Sunda et al. 2002;
Ross and Van Alstyne 2007), a compatible solute (Reed
1983; Edwards et al. 1987, 1988; Kirst 1989; Kirst et al.
1991; Karsten et al. 1992), a cryoprotectant (Karsten et al.
1992, 1996), and a waste molecule used to expel excess sul-
fur and energy (Stefels 2000). Thus, elevated DMSP con-
centration in winter may be a physiological response to
increased anti-oxidant or cryoprotection requirements dur-
ing periods of senescence and cold temperature.

We also detected intra-thallus variation, although diVer-
ences in DMSP concentration between parts of the thallus
were small compared to the three-fold seasonal changes
and the pattern of the intra-thallus diVerences was not con-
sistent over time. Relatively small intra-thallus diVerences
in DMSP concentrations have been reported from U. lact-
uca (Van Alstyne et al. 2007). In other algal species, con-
centrations of both inducible and constitutive natural
products within tissues of individual algae can vary greatly
(Hay and Fenical 1988; Hay and Steinberg 1992; Hay
1996; Van Alstyne et al. 2003 and references therein).
Algae may allocate more compounds toward new, or grow-
ing tissues, reproductive structures, or basal structures such
as the holdfast or stipe. Growth and reproduction occur
throughout the thallus of C. fragile ssp. tomentosoides
(Trowbridge 1998), and its coenocytic structure may allow
translocation of secondary metabolites between parts of the
alga. This may explain why DMSP is not conWned to, or
consistently concentrated in, particular parts of the thallus.

DMSP in other species

Dimethylsulfoniopropionate is absent or at very low con-
centration in the majority of algal species that co-occur
with C. fragile ssp. tomentosoides in the northwest Atlan-
tic. The patterns of DMSP abundance that we measured in
these species are similar to those observed in related spe-
cies from other locations (e.g., Reed 1983; BischoV et al.
1994; Karsten et al. 1994; Van Alstyne et al. 2001; Van
Alstyne and Puglisi 2007; K. L. Van Alstyne, unpublished
data). Only P. harveyi and U. lactuca had DMSP concen-
trations comparable to those of C. fragile ssp. tomentoso-
ides. P. harveyi, like C. fragile ssp. tomentosoides, is an
invasive species, believed to have originated in Japan (McI-
vor et al. 2001), and the samples we used in our analysis
were found growing epiphytically on C. fragile ssp. toment-
osoides. Although urchin populations in the Northwest
Atlantic may have encountered U. lactuca, the alga is nor-

mally found in the intertidal and upper subtidal zone, above
the depth that urchins normally reach (R. E. Scheibling,
personal observation). No DMSP was detected in laminar-
ian kelps, which are by far the most abundant macroalgae
and potential competitors of C. fragile ssp. tomentosoides
in Nova Scotia and the Gulf of Maine (Levin et al. 2002;
Scheibling and Gagnon 2006), as well as the preferred food
of urchins (Scheibling and Hatcher 2006). Thus, urchins in
this area may be relatively naïve with respect to AA and
DMS.

Feeding assays

We found that concentrations of AA as low as 0.08% and
concentrations of DMS as low as 0.009% deterred feeding
of S. droebachiensis in choice experiments with artiWcial
foods that mimicked the nutritional value of C. fragile ssp.
tomentosoides. Urchins also avoided foods containing both
chemicals together, although the results were somewhat idi-
osyncratic. The volatility of DMS and solubility of AA may
have contributed to the variability of our results. Although
we were able to detect signiWcant eVects of AA and DMS in
the majority of our choice experiments, the eVect was not
signiWcant at some intermediate concentrations. The grad-
ual decline in DMS (and presumably AA) during our exper-
iments appeared to cause treated foods to become
increasingly attractive as the experiments progressed
(Fig. 5b), making our tests for the eVects of defensive
metabolites conservative. Depriving sea urchins of food for
several weeks prior to our feeding assays was done to
encourage more rapid feeding, and thus shorten the experi-
mental period (Van Alstyne and Houser 2003), to minimize
loss of AA and DMS as the assays progressed. However,
increased hunger levels may make herbivores less sensitive
to defensive chemicals (Cronin and Hay 1996b), further
contributing to the conservative nature of our results. Thus,
AA and DMS may be eVective deterrents to grazing by S.
droebachiensis at even lower concentrations than tested in
our experiments. AA and DMS have both been shown to
deter urchin feeding at concentrations higher than those we
tested (Van Alstyne et al. 2001; Van Alstyne and Houser
2003).

Although AA and DMS deterred urchin feeding under
choice conditions, they did not impair feeding under no-
choice conditions. These results are consistent with previ-
ous studies where urchins consumed C. fragile ssp. toment-
osoides readily in the absence of other algae, but avoided it
when kelps or turf algae were present (Scheibling and
Anthony 2001; Sumi and Scheibling 2005). Anti-grazing
defenses are unlikely to be equally eVective in all situa-
tions. Rather, their eVects will depend on the nutritional sta-
tus of the grazer (Cronin and Hay 1996b), the nutritional
value of the alga (DuVy and Paul 1992; Hay et al. 1994;
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Hemmi and Jormalainen 2002; Cruz-Rivera and Hay 2003),
grazer density (Wright et al. 2005), and the availability of
more palatable foods (Cruz-Rivera and Hay 2003).
Although there was no eVect of concentration on feeding
rate in the no-choice experiment, patterns of temporal vari-
ation in DMSP concentration in C. fragile and the feeding
rate of urchins on the alga suggest that further research into
the inXuence of DMSP on feeding rate is warranted.
Urchins tend to feed on C. fragile at a high rate in the late
summer and fall when DMSP concentrations are low, and
at a low rate during the winter when DMSP concentrations
are high (Fig. 7). This pattern of consumption stands in
contrast to that of urchins feeding on kelp, which peaks in
the winter (Scheibling and Anthony 2001; Lyons and
Scheibling 2007).

Due to logistical constraints, we tested the eVects of AA
and DMS on S. droebachiensis from Washington, rather than
Nova Scotia, which could aVect the applicability of our
experimental results to interactions between S. droebachien-
sis and C. fragile ssp. tomentosoides in Nova Scotia. DiVer-
ent populations of conspeciWc herbivores sometimes react
diVerently to algal secondary metabolites (Bricelj et al. 2000;
MacQuarrie and Bricelj 2000; Sotka and Hay 2002; Bricelj
et al. 2005). However, in these systems, populations with a
history of exposure to defended algae tend to be more toler-
ant of them (Sotka 2003; Sotka et al. 2003; Bricelj et al.
2005). C. fragile ssp. tomentosoides arrived in Nova Scotia
relatively recently, and DMSP is uncommon in the native
Xora of the rocky subtidal zone. In contrast, S. droebachien-
sis in Washington coexist with an indigenous population of
C. fragile (subspecies are not recognized within the native
range; Trowbridge 1998) and at least seven other macroalgae
containing equivalent or greater concentrations of DMSP as
C. fragile ssp. tomentosoides in Nova Scotia (Van Alstyne
et al. 2001). Although we cannot be certain that urchins from
Nova Scotia respond to AA and DMS in the same way as
those from Washington, if urchin populations do diVer in

their sensitivity to these chemicals, it is more likely that those
in Washington have evolved a degree of tolerance for them.

Ecological implications of DMSP production 
by Codium fragile ssp. tomentosoides

Previous studies have demonstrated that C. fragile is not a
preferred food of S. droebachiensis (Prince and Leblanc
1992; Scheibling and Anthony 2001; Levin et al. 2002;
Sumi and Scheibling 2005) or several other Wsh (Hay et al.
1987), arthropod (DuVy and Hay 1994; Bruno and O’Con-
nor 2005), polychaete (Hay et al. 1988) and molluscan
grazers (Lubchenco 1978; Trowbridge 1995; Chavanich
and Harris 2002). Our results suggest that production of rel-
atively high quantities of DMSP by C. fragile ssp. toment-
osoides may be a contributing factor in the avoidance of C.
fragile ssp. tomentosoides by urchins when other macroal-
gae, such as kelps or turf-forming species, are available.

Codium fragile ssp. tomentosoides and another chemi-
cally defended alga, Desmarestia viridis, were the only
erect macrophytes observed in the wake of an urchin graz-
ing front in Nova Scotia (D. A. Lyons, personal observa-
tion). Because the eVect of AA and DMS is to alter
preferences among foods, rather than prevent grazing when
only one food source is available, urchins may eventually
consume C. fragile ssp. tomentosoides remaining in bar-
rens. In mixed algal beds with low to moderate densities
of urchins, however, preferential grazing of native algae by
S. droebachiensis may reduce competition with C. fragile ssp.
tomentosoides, allowing populations of the invasive alga to
establish and expand.
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