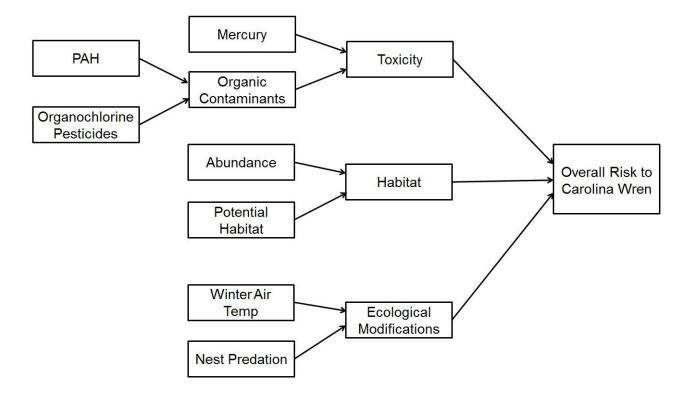
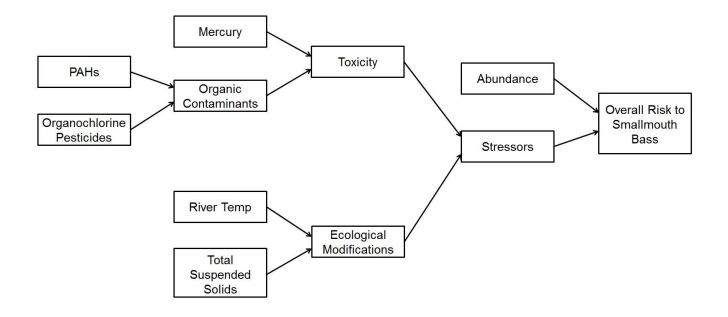

Results for the Integrated Regional Risk Assessment for the South River and Upper Shenandoah River, Virginia

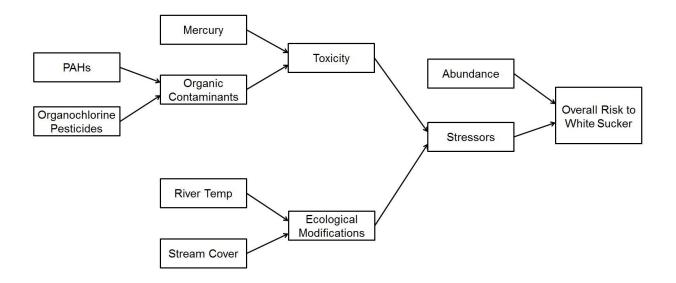
APPENDIX

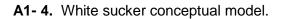

List of Appendices

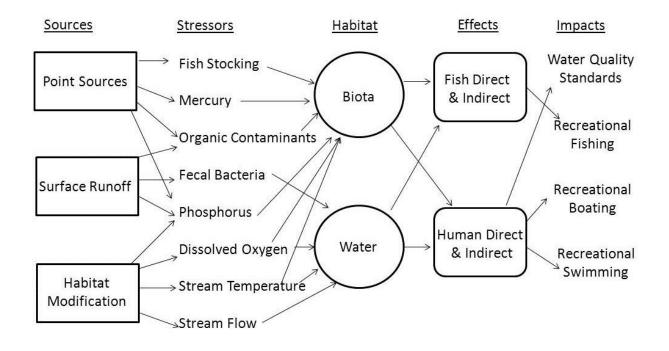
- Appendix 1. Conceptual Models for the biotic and water quality endpoints.
- **Appendix 2.** Metadata table: summary of data used for prior probabilities (input parameters) for all models including years and source of data.
- Appendix 3. Biotic model parameterization tables.
- **Appendix 4.** Water Quality model parameterization tables.
- Appendix 5. Bayesian networks for biotic endpoints (example shown for Region 2).
- Appendix 6. Bayesian networks for water quality endpoints (example shown for Region 2).
- **Appendix 7.** Sensitivity analysis: Entropy reduction results for the initial biotic and water quality models.
- **Appendix 8.** Percent reduction of risk when top entropy parameters were set to 100% in the lowest state.
- **Appendix 9.** Conceptual models for the Agriculture Best Management Practices management scenario.
- Appendix 10. Conceptual models for the Bank Stabilization management scenario.
- Appendix 11. Model parameterization tables for Ag BMPs management scenario.
- Appendix 12. Example of a CPT calculation for the management nodes.
- Appendix 13. Model parameterization for BST management scenario.
- Appendix 14. Bayesian networks for the Ag BMP management scenario for affected endpoints.
- Appendix 15. Bayesian networks for the BST management scenario for affected endpoints.
- Appendix 16. Banks stabilization management scenarios for Best and Worst Case Scenarios.
- Appendix 17. Sensitivity analysis: Entropy reduction results for adaptive management.
- Appendix 18. Conceptual models for the human health and recreation endpoints.



Appendix 1. Conceptual models for the biotic and water quality endpoints.


A1-1. Belted Kingfisher conceptual model.




A1-2. Carolina Wren conceptual model.

A1-3. Smallmouth bass conceptual model.

A1-5. Water Quality and Recreational River Use Conceptual Model

Appendix 2. Data Sources

Endpoint	Input node	Data Variable	Years	Source of Data
	Mercury	Mercury bird blood concentration (ppm)	2005-2007	South River Science Team (SRST) (SRST/URS, pers. comm., 3 January 2014)
Belted Kingfisher	PAHs (ug/kg)	Acenaphthene Acenaphthylene Anthracene Benz[a]anthracene Benzo[a]pyrene Benzo[e]pyrene Benzo[b]fluoranthene Benzo[ghi]perylene Benzo[k]fluoranthene Chrysene Dibenz[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3- cd)pyrene Phenanthrene Pyrene	2003 – 2010 Sediment Data	SRST (SRST/URS, pers. comm., 3 January 2014)
	Organochlorine Pesticides (ug/kg)	Aldrin Chlordane Dieldrin Endrin Heptachlor Methoxychlor Heptachlor epoxide	2003 – 2007 Water Data	SRST (SRST/URS, pers. comm., 3 January 2014)
	Territory	Nests per length of river section (m)	2006	SRST (SRST/URS, pers. comm., 3 January 2014)
	Potential Habitat	Land Use Type (%)	2006	SRST (SRST/URS, pers. comm., 3 January 2014)

A2 1. Summary of data used for prior probabilities (input parameters) for all models including years and source of data.

	Fish Length	Length of Sample Fish in River (cm)	2006 Fish Community Survey 2005-2011 Fish Fillet Data	SRST (SRST/URS, pers. comm., 3 January 2014)
	Submerged Aquatic Vegetation	Percent SAV Cover (%)	2006 – 2007	SRST (SRST/URS, pers. comm., 3 January 2014)
	Turbidity	Seechi depth (cm)— converted from NTU Equation: (244.13*NTU)^-0.662	1994-2009 Water Data	SRST (SRST/URS, pers. comm., 3 January 2014)
	Nest Predation	Nests predated (%)		Jackson et al. 2011a
	Mercury	Mercury bird blood concentration (ppm)	2005 – 2008	SRST (SRST/URS, pers. comm., 3 January 2014)
	PAHs	Same as PAHs for Belted Kingfisher	2003 – 2010 Sediment Data	SRST (SRST/URS, pers. comm., 3 January 2014)
	Organochlorine Pesticides	Same as Pesticides for Belted Kingfisher	2003 – 2007 Water Data	SRST (SRST/URS, pers. comm., 3 January 2014)
Carolina Wren	Abundance	Relative Abundance	2005-2008	SRST (SRST/URS, pers. comm., 3 January 2014)
	Potential Habitat	Land Use Type (%)	2006	SRST (SRST/URS, pers. comm., 3 January 2014)
	Winter Air Temperature	Winter Air Temperature, December – February (°C)	2005 – 2014	NOAA
	Nest Predation	Nests predated (%)		Jackson et al. 2011 <i>a</i> – data linked to nest abandonment
	Γ	Γ	Γ	
	Mercury	Fish Fillet Mercury Concentration (mg/kg)	2003 – 2011	SRST (SRST/URS, pers. comm., 3 January 2014)
Smallmouth	PAHs	Same as PAHs for Belted Kingfisher	2003 – 2010 Sediment Data	SRST (SRST/URS, pers. comm., 3 January 2014)
Bass	Organochlorine Pesticides	Same as Pesticides for Belted Kingfisher	2003 – 2007 Water Data	SRST (SRST/URS, pers. comm., 3 January 2014,)
	River Temperature	River Temperature (°C)	2006 – 2007 (Region 4 only)	USGS a,b,c,d

			2010 – 2011	
	Total Suspended Solids	Suspended Solids (mg/L)	2005 – 2013	SRST (SRST/URS, pers. comm., 3 January 2014)
	Abundance	Smallmouth Bass Abundance in each risk region relative to entire site (%)	2006 Fish Community Survey	SRST (SRST/URS, pers. comm., 3 January 2014)
	Mercury	Fish Fillet Mercury Concentration (mg/kg)	2005 – 2007	SRST (SRST/URS, pers. comm., 3 January 2014)
	PAHs	Same as PAHs for Belted Kingfisher	2003 – 2010 Sediment Data	SRST (SRST/URS, pers. comm., 3 January 2014)
White	Organochlorine Pesticides	Same as Pesticides for Belted Kingfisher	2003 – 2007 Water Data	SRST (SRST/URS, pers. comm., 3 January 2014)
Sucker	River Temperature	River Temperature (°C)	2006 – 2007 (Region 4 only) 2010 – 2011	USGS a,b,c,d
	Stream Cover	Submerged Aquatic Vegetation Cover (%)	2006 – 2007	SRST (SRST/URS, pers. comm., 3 January 2014)
	Abundance	White Sucker Abundance in each Risk Region relative to entire site (%)	2006 Fish Community Survey	SRST (SRST/URS, pers. comm., 3 January 2014)
	-			
	Total Phosphorus (mg/l)	Total Phosphorus, Total Phosphorus as P	2006-2007 (Region 6); 2006-2007 & 2010-2013 (Region 2-5)	SRST (SRST/URS, pers. comm., 3 January 2014)
Matar	Bacteria Indicators	E. coli	2005 – 2010	SRST (SRST/URS, pers. comm., 3 January 2014)
Water Quality	Summer Dissolved O2	Summer Dissolved Oxygen, April- September (mg/L)	2006 – 2008	SRST (SRST/URS, pers. comm., 3 January 2014)
	Winter Dissolved O2	Winter Dissolved Oxygen, October- March (mg/L)	2006 – 2008	SRST (SRST/URS, pers. comm., 3 January 2014)
	MeHg Body Burden Fish	Fish Fillet Methylmercury Concentration (mg/kg)	2003 – 2013	SRST (SRST/URS, pers. comm., 3 January 2014)

Deviation from LT Summer Temperatures	Deviation from 30- Year average for Summer river temperature, April- September (°C)	2010 – 2011 No data for Region 4	USGS a,b,c,d
Deviation from LT Winter Temperature	Deviation from 30- Year average for Winter river temperature, October- March (°C)	2010 – 2011 No data for Region 4	USGS a,b,c,d
Deviation from LT Summer Discharge	Deviation from 30- Year average for Summer Discharge, April-September (%)	2010 – 2013 No data for Region 4	USGS a,b,c,d
Deviation from LT Winter Discharge	Deviation from 30- Year average for Winter Discharge, October- March (%)	2010 – 2013 No data for Region 4	USGS a,b,c,d
Fish Stocking	Presence or absence of fish stocking	2011	Bugas 2011 Virginia Department of Game and Inland Fisheries

- **Appendix 3.** Biotic model parameterization tables describing input parameters, ranking schemes, justification, and data sources or references.
- A3-1. Summary explanation of input parameters for Belted Kingfisher initial risk estimates. This includes parameter and parameter definition; states and associated ranges, and justification for ranges with corresponding references.

Input parameter	State	Value	Justification	Reference
Mercury	Zero	0.00-0.40 ppm		_
	Low	0.41-1.00 ppm	Adverse effects estimated from Evers	Evers et al. 2004 Lane et al. 2004; White
Probability of mercury bird	Med	1.01-2.00 ppm	et al. 2004	2004, White
blood concentration (ppm)	High	>2.01 ppm		
PAHs	Under NOAA's LEL for sediment	≤4,000 (µg/kg)	Comparison with the NOAA's Low Effects Limit (LEL) Screening	Buchman 2008
Probability of PAH concentration (ug/kg)	Over NOAA's LEL for sediment	4,000-8,000 (µg/kg)	Reference Value	Buchman 2006
Organochlorine Pesticides	Lower than NOAA's Chronic Level for water	*pesticide specific (µg/kg)	Comparison with the NOAA's Chronic	
Probability of Organochlorine pesticide concentration (μg/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (µg/kg)	Toxicological Effects Level	Buchman 2008
	Zero	Pasture/Hay, Developed Open Space, Developed Low Intensity, Open Water	>1 nest present in land use for entire risk region	
Potential Habitat Probability of each land use	Low	Deciduous Forest, Cultivated Crops	One nest present in land use for entire risk region; directly adjacent to land use with containing nests	Bent 1940; Prose 1985; White 2007
type (%)	Medium	Evergreen Forest, Mixed Forest	Adjacent to land use containing nests, but with no nests present	
	High	Developed Medium Intensity, Developed High Intensity	No nests present nearby	
Submerged Aquatic	Zero	0-20%	Linear relationship between suitability	
Vegetation (SAV)	Low	20-40%	Linear relationship between suitability Index and % water surface	Prose 1985
Probability of percent SAV	Med	40-70%	obstruction	
cover (%)	High	70-100%		
Turbidity	Zero	> 60 cm	Linear relationship between collective	
	Low	30-60 cm	Linear relationship between suitability Index and turbidity measure by	Prose 1985
Probability of Secchi depth	Med	15-30 cm	Secchi depth	
(cm)	High	<15 cm	· ·	

Fish Length	Acceptable	<17 cm	Generally eat fish <10 cm; will feed young fish as large as 17 cm	Slayer and Lagler 1949 Davis 1982
Length of sample fish in river (cm)	Unacceptable	>18 cm	Outside of the range of fish sizes normally found in kingfishers	Imhof 1962
Nest predation	Not effected	Site specific nest predation	Site-specific Carolina Wren predation rates of 14.5% +/- 6.1% for the	laskeen et el. 2004
Nests predated (%)	Effected	data	contaminated South River and 19.6% +/- 7.8% for upstream of the contaminated site.	Jackson et al. 2001
Territory	Ideal	0-2340 meters	Home range when food is plentiful	
-	Acceptable	2340-4800 m	Medium home range size	Davis 1982; Brooks and Davis 1987
Length of river section (m)	Unacceptable	>4800 m	Maximum measured home range	Davis 1907

*SQuiRTs tables for chronic levels of pesticides can be found here: http://archive.orr.noaa.gov/book_shelf/122_NEW-SQuiRTs.pdf

A3-2. Summary explanation of input parameters for Carolina Wren initial risk estimates. This includes parameter and parameter definition; states and associated ranges, and justification for ranges with corresponding references.

Input parameter	State	Value	Justification	Reference
	Zero	0-1.2 ppm	0-20% reduction in nest success	
Mercury	Low	1.2-2.1 ppm	20-40% reduction in nest success	Jackson et al. 2011a
Probability of mercury bird	Med	2.1-2.9 ppm	40-60% reduction in nest success	Cristol et al. 2008
blood concentration (ppm)	High	2.9- 10 ppm	>60% reduction in nest success	
PAHs	Under NOAA's LEL for sediment	≤4,000 (µg/kg)	Comparison with the NOAA's Low Effects Limit (LEL) Screening	Buchman 2008
Probability of PAH concentration (ug/kg)	Over NOAA's LEL for sediment	4,000-8,000 (µg/kg)	Reference Value	
Organochlorine Pesticides	Lower than NOAA's Chronic Level for water	*pesticide specific (µg/kg)	Comparison with the NOAA's Chronic	Buchman 2008
Probability of Organochlorine pesticide concentration (μg/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (µg/kg)	Toxicological Effects Level	

	Zero	Deciduous forest, evergreen forest, mixed forest, pasture/hay, cultivated crops	>1 nest present in land use for entire risk region		
Potential Habitat	Low	Open water, developed open space, developed low intensity	One nest present in land use for entire risk region; directly adjacent to land use with containing nests	Bent 1940 Prose 1985	
Probability of each land use type (%)	Medium	Developed medium intensity	Adjacent to land use containing nests, but with no nests present	White 2007	
	High	Developed high intensity, barren land, woody wetlands, emergent herbaceous wetlands	No nests present nearby		
Winter Air Temperature	Zero	>2.7 °C			
	Low	-12 to 2.7 °C	Based on seasonal trends and	Haggerty et al. 1995	
Probability of winter air temperature during December-February (°C)	Med	-20.83 to -12 °C	extreme weather events as described in Haggerty (1995)	NOAA National Climatic Data	
December-rebruary (C)	High	-27 to -20.83 °C			
	Zero	<10% of site abundance	Site-specific relative abundance. The		
Abundance	Low	11-22% site abundance	percentage of total birds sampled that are in a given risk region was	Jackson et al. 2011a	
Probability of relative	Medium	23-35% site abundance	calculated. A ranking scheme was		
abundance (%)	High	> 36% of the total of all regions	created to evenly distribute regions into 4 states.		
Nest Predation	No predation		Site-specific Carolina Wren predation rates of 14.5% +/- 6.1% for the contaminated South River and 19.6%	Jackson et al. 2011a	
Probability of Carolina Wren nest predation (%)	Predation	Site specific predation data	+/- 7.8% for upstream of the contaminated site (Region 1 and part of Region 2).	Cristol et al. 2008	

*SQuiRTs tables for chronic levels of pesticides can be found here: <u>http://archive.orr.noaa.gov/book_shelf/122_NEW-SQuiRTs.pdf</u>

A3-3. Summary explanation of input parameters for smallmouth bass initial risk estimates. This includes parameter and parameter definition; states and associated ranges, and justification for ranges with corresponding references.

Input parameter	Parameter states	Range	Justification	References
Mercury	Zero	<0.2 mg/kg	< 5% lethality or equivalent endpoints	
	Low	0.21-1.1 mg/kg	5 - 24% lethality or equivalent	Dillon et al. 2010; USEPA 2009c
Probability of fish fillet methylmercury	Med	1.2-2.8 mg/kg	24 - 50% lethality or equivalent	05EPA 20090
concentration (mg/kg)	High	>2.9 mg/kg	> 50% lethality or equivalent	
PAHs	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Comparison with the NOAA's Low Effects Limit	Duckman 2000
Probability of PAH concentration (ug/kg)	Over NOAA's LEL for sediment	4,000-8,000 (ug/kg)	(LEL) Screening Reference Value	Buchman 2008
Organochlorine Pesticides	Lower than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Comparison with the NOAA's Chronic	Duckness 0000
Probability of Organochlorine pesticide concentration (ug/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Toxicological Effects Level	Buchman 2008
	Zero	20-26 °C	Ideal temps for spawning & growth; Temp optimum for juvenile growth & fry survival; Preferred adult temp range	Horning and Pearson 1973, Shuter et al. 1980, Armour 1993
	Low	17-19.9 or 26.1-29 °C	Spawning occurs at lower temp range, however we have reached upper temp limit for spawning (27°C); Positive growth rates for juvenile & fry (upper temps)	Kerr 1966, Horning and Pearson 1973, Shuter et al. 1980
River Temperature Probability of river temperature (°C)	Med	15-16.9 or 29.1-31.9 °C	Reaching min. spawning temps, survival rates of egg/fry start to decrease; Nearing the upper avoidance temps by SMB (31°C); 100% mortality of egg/fry at upper temps (>30°C)	Kerr 1966, Cherry et al. 1975, Stauffer et al. 1976, Shuter et al. 1980
	High	≤14.9 or ≥32 °C	Below 15°C spawning likely won't occur; Egg survival decreases; Nest abandonment by male fish leads to increased predation; Colder waters (10-12°C) are associated with a fungus that causes egg/fry mortality; Avoidance temps for adults & juvenile fish; Upper thermal limits for fry & fingerlings ~33°C	Kerr 1966, Horning and Pearson 1973, Cherry et al. 1975 and 1977, Shuter et al. 1980, Armour 1993

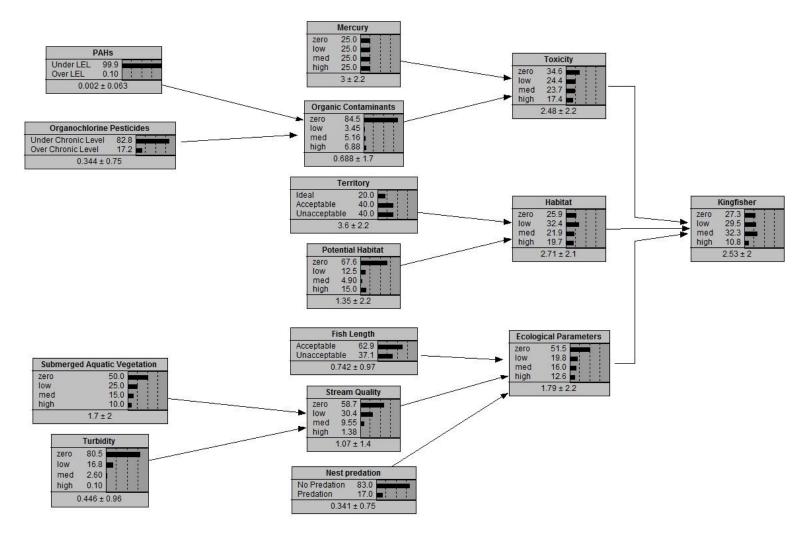
To (al Oscar and al Oalida	Zero	<25 mg/L	Preferential habitats ≤ 25 mg/L	
Total Suspended Solids	Low	25-80 mg/L	Prey consumption decreases > 20 mg/L	Hubert and Lackey 1980; Carter et al.
Probability of suspended	Med	80-200 mg/L	Avoidance behavior; non-lethal effects	2010
solids (mg/L)	High	>200 mg/L	Onset of gill tissue damage in adult trout (no information on smallmouth bass)	USEPA 2003
Abundance	Zero	<5%	Site-specific relative abundance. The	
Probability of smallmouth	Low	5-10%	percentage of total SMB sampled that are in a	URS Fish Community
bass abundance in each risk region relative to	Med	10-50%	given risk region was calculated. A ranking scheme was created to evenly distribute	Survey 2006
entire site (%)	High	>50%	regions into 4 states.	

*SQuiRTs tables for chronic levels of pesticides can be found here: <u>http://archive.orr.noaa.gov/book_shelf/122_NEW-SQuiRTs.pdf</u>

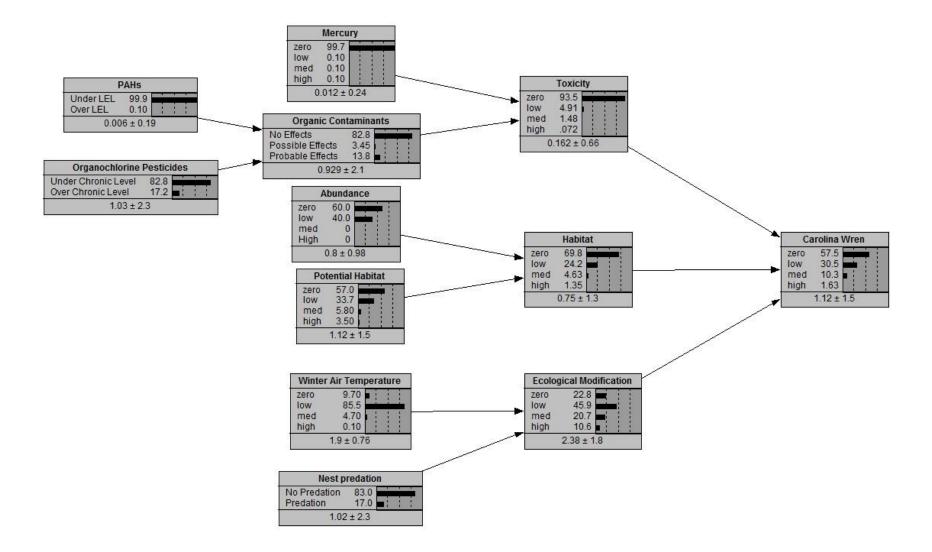
A3-4. Summary explanation of input parameters for white sucker initial risk estimates. This includes parameter and parameter definition; states and associated ranges, and justification for ranges with corresponding references.

Input parameter	Parameter states	Range	Justification	References
Mercury	Zero	<0.2 mg/kg	< 5% lethality or equivalent endpoints	
Desk skiller of fisk filler	Low	0.21-1.1 mg/kg	5 - 24% lethality or equivalent	Dillon et al. 2010;
Probability of fish fillet methylmercury	Med	1.2-2.8 mg/kg	24 - 50% lethality or equivalent	USEPA 2009c
concentration (mg/kg)	High	>2.9 mg/kg	> 50% lethality or equivalent	
PAHs	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Comparison with the NOAA's Low Effects Limit	Duckaser 0000
Probability of PAH concentration (ug/kg)	Over NOAA's LEL for sediment	4,000-8,000 (ug/kg)	(LEL) Screening Reference Value	Buchman 2008
Organochlorine Pesticides	Lower than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Comparison with the NOAA's Chronic	Buchman 2008
Probability of Organochlorine pesticide concentration (ug/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Toxicological Effects Level	Buomian 2000
River Temperature	Zero	14-19 °C	Maximum hatching success	McCormick et al. 1977

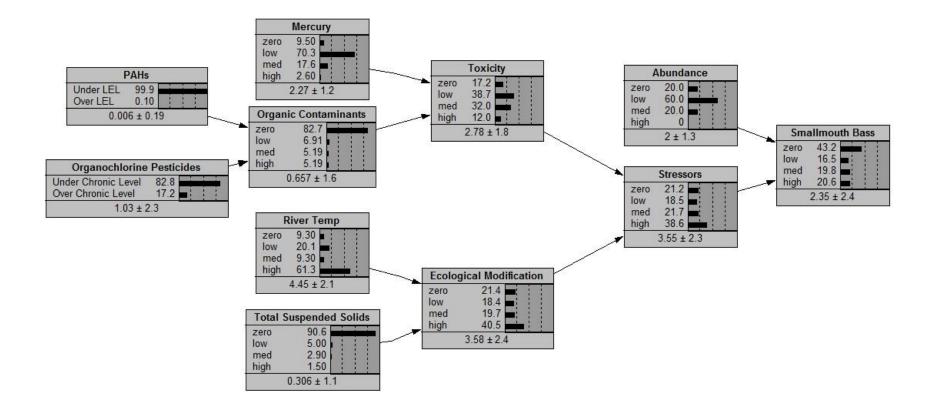
Probability of river	Low	11-14 or 19-22 °C	Preferred temp. range for adult white sucker (Horak and Tanner 1964)	Horak and Tanner 1964
temperature (degrees	Med	9-11 or 22-29 °C	Preferred temp. range for juvenile	Marcy 1976
Celsius)	High	<9 or >29 °C	Upper lethal temp. limit for juvenile; decreased hatching success	Brett 1944; Carlander 1969 Twomey et al. 1984
Stream Cover	Zero	25-85%	Derived from Habitat Suitability Index models	
Deck at 11th of a second	Low	15-25% or 85-100%	and in stream flow suitability curves.	Twomey et al. 1984.
Probability of percent submerged aquatic	Med	5-15%	Submerged aquatic vegetation was used as a	Dence 1948; Probst 1982b
vegetation cover (%)	High	<5%	metric for stream cover.	
Abundance	Zero	<5%	Site-specific relative abundance. The	
Probability of white sucker	Low	5-10%	percentage of total WS sampled that are in a	URS Fish Community
abundance in each risk	Med	10-50%	given risk region was calculated. A ranking scheme was created to evenly distribute	Survey 2006
region relative to entire site (%)	High	>50%	regions into 4 states.	

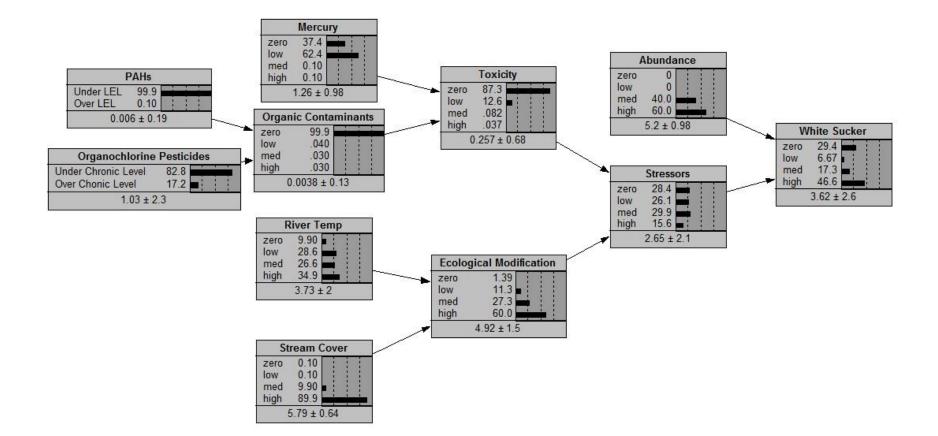

*SQuiRTs tables for chronic levels of pesticides can be found here: <u>http://archive.orr.noaa.gov/book_shelf/122_NEW-SQuiRTs.pdf</u>

Appendix 4.	WQ model parameterization tables describing input parameters, ranking schemes, justification, and data sources or
	references.

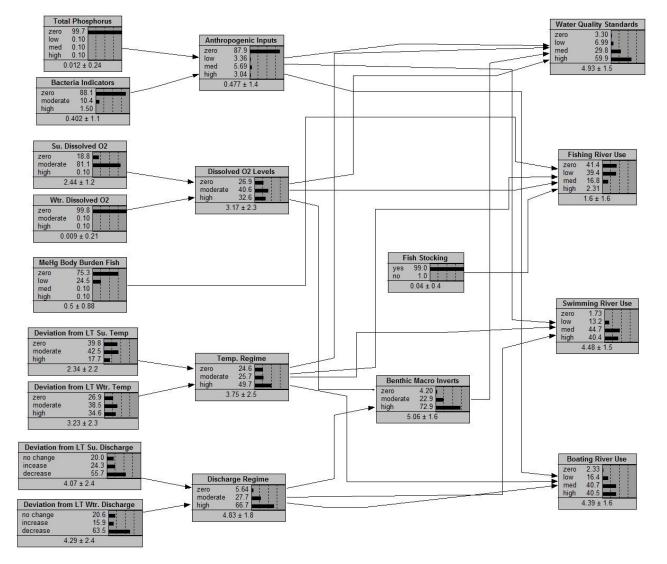

Input parameter	Parameter states	Range	Justification	Sources
	Zero	<0.1 mg/L	Below 0.1 no nuisance algal blooms EPA desired goal =0.1 mg/L	Black et al. 2010, USEPA 2006
Total Phosphorus	Low	0.1-0.3 mg/L	01-0.3 mg/L few surface waters are contaminated by algal booms	(Wadeable Streams Assessment)
Probability of total phosphorus (mg/L)	Med	0.31-0.5 mg/L	Algal growth decreases water clarity and	Sprague 2009
	High	>0.51 mg/L	interferes with fishing, swimming and boating (Nat'l WQ Assessment)	
Bacteria indicators	Zero	<200 CFU/100 mL	Optomoriant definitions based on MA DEO	
Probability of fecal bacteria (CFU/100mL)	Moderate High	200-1000 CFU/100 mL >1000 CFU/100 mL	Categorical definitions based on VA DEQ bacteria standards	VDEQ 2009
Summer Dissolved O ₂	Zero	>9 mg/L	Cotogorized states were defined following the	Pollino et al. 2007
Probability of dissolved oxygen levels April-	Moderate	5-9 mg/L	Categorical states were defined following the methodology of a similar water quality risk analysis (Pollino et al. 2007).	30-year seasonal averages from USGS
September (mg/L)	High	<5 mg/L		(a,b,c,d)
Winter Dissolved O ₂	Zero	>9 mg/L	Categorical states were defined following the	Pollino et al. 2007
Probability of dissolved oxygen levels October-	Moderate	5-9 mg/L	methodology of a similar water quality risk analysis (Pollino et al. 2007)	30-year seasonal averages from USGS
March (mg/L)	High	5 mg/L		(a,b,c,d)
MeHg Body Burden	Zero	<0.2 mg/kg		Dillon et al. 2010
Fish	Low	0.21-1.1 mg/kg	Criteria were the same used for the SMB	EPA fish study
Probability of fish fillet methylmercury	Med	1.2-2.8 mg/kg	mercury assessment.	www.epa.gov/waterscie
concentration (mg/kg)	High	>2.9 mg/kg		nce/fishstudy
Deviation from LT summer temp	No change	0-2 °C deviation		Pollino et al. 2007
Probability of deviation from 30-year seasonal	Moderate	2-4 °C deviation	Categorical states were defined following the methodology of a similar water quality risk analysis (Pollino et al. 2007).	30-year seasonal averages from USGS
average for river temp from April-September (°C)	High	>4 °C deviation		(a,b,c,d)

Deviation from LT				
winter temp	No change	0-2 °C deviation		Pollino et al. 2007
Probability of deviation from 30-year seasonal	Moderate	2-4 °C deviation	Categorical states were defined following the methodology of a similar water quality risk analysis (Pollino et al. 2007).	30-year seasonal averages from USGS <i>(a,b,c,d)</i>
average for river temp from October-March (°C)	High	>4 °C deviation		
Deviation from LT summer discharge	No change	76-125% deviation		Pollino et al. 2007
Probability of deviation from 30-year seasonal average for discharge	Increase 126-175% deviation methodology of a similar wa		Categorical states were defined following the methodology of a similar water quality risk analysis (Pollino et al. 2007).	30-year seasonal averages from USGS <i>(a,b,c,d)</i>
from April-September (%)	Decrease	25-75% deviation		(0,0,0,0)
Deviation from LT winter discharge	No change	76-125% deviation		Pollino et al. 2007
Probability of deviation from 30-year seasonal average for discharge	Increase	126-175% deviation	Categorical states were defined following the methodology of a similar water quality risk analysis (Pollino et al. 2007).	30-year seasonal averages from USGS <i>(a,b,c,d)</i>
from October-March (%)	Decrease	25-75% deviation		
Fish Stocking	Yes	Fish stocking occurs in risk region	Presence or absence of fish stocking within a	Bugas 2011
Presence or absence of fish stocking	No	No fish stocking in risk region	risk region.	(VDGIF Angler Survey)


Appendix 5. Diagrams of Bayesian networks for all biotic endpoints for Region 2. The specific Netica models will be provided with the Appendix. For a given endpoint, the structure of the model is the same except for the inputs specific to that region.


A5-1. Bayesian network for Belted Kingfisher, Region 2.

A5-2. Bayesian network for Carolina Wren, Region 2.



A5-3. Bayesian network for Smallmouth Bass, Region 2.

A5-4. Bayesian network for White Sucker, Region 2.

Appendix 6. Bayesian networks for water quality endpoints using Region 2 as an example. Each model is available as a Netica file as part of the electronic appendix.

A6-1. Bayesian network for Water Quality, Region 2.

Appendix 7. Sensitivity Analysis: entropy reduction results for the initial biotic and water quality models.

The following table displays the top 3 input parameters (chemical and ecological stressors) and their degree of entropy reduction on each of the endpoints in every region.

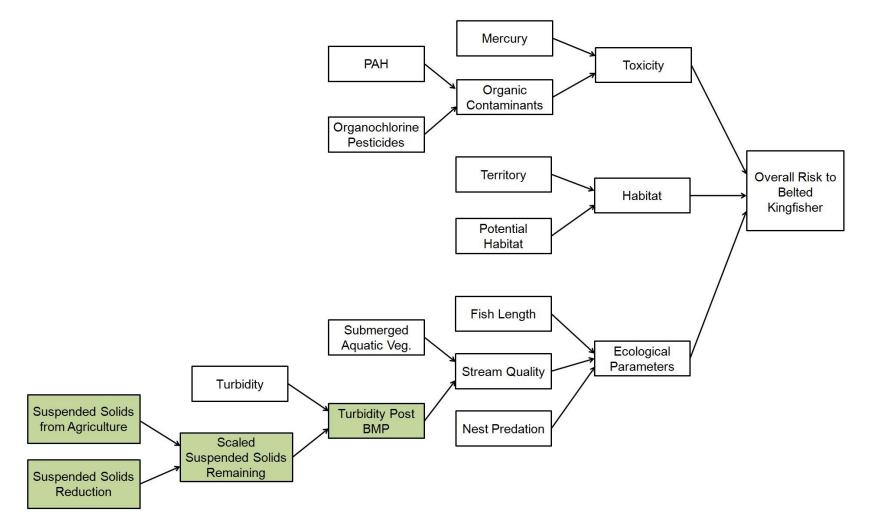
Only input parameters (parent nodes) were included in the lists. For example, Discharge Regime could not be on the list because site-specific data were lacking. As such, only Deviation from Summer Discharge or Deviation from Winter Discharge could be used. Inherently, nodes that have the least number of connections to the endpoint are more likely to have greater influence over the final entropy reduction value of the endpoint. Management may choose to target Discharge Regime as a whole, but it is important to know what component of the Discharge Regime is driving the risk. This can only be understood by looking at the influence of input parameters on the endpoints.

	Input Parameter	Entropy Reduction
Belted Kingfisher		
	Mercury	0.1475
Region 2	Fish Length	0.0704
	Potential Habitat	0.0433
	Mercury	0.1563
Region 3	Fish Length	0.0946
	Potential Habitat	0.0399
	Mercury	0.1929
Region 4	Fish Length	0.0759
	Territory	0.0250
	Mercury	0.2242
Region 5	Fish Length	0.0781
	Territory	0.0229
	Fish Length	0.0981
Region 6	Mercury	0.0449
	Territory	0.0428
Carolina Wren		
	Nest Predation	0.0617
Region 2	Potential Habitat	0.0587
	Winter Air Temperature	0.0195
	Mercury	0.1082
Region 3	Nest Predation	0.0581
	Winter Air Temperature	0.0181
	Mercury	0.0953
Region 4	Nest Predation	0.0335
	Winter Air Temperature	0.0122
Pagion 5	Mercury	0.1081
Region 5	Nest Predation	0.0363

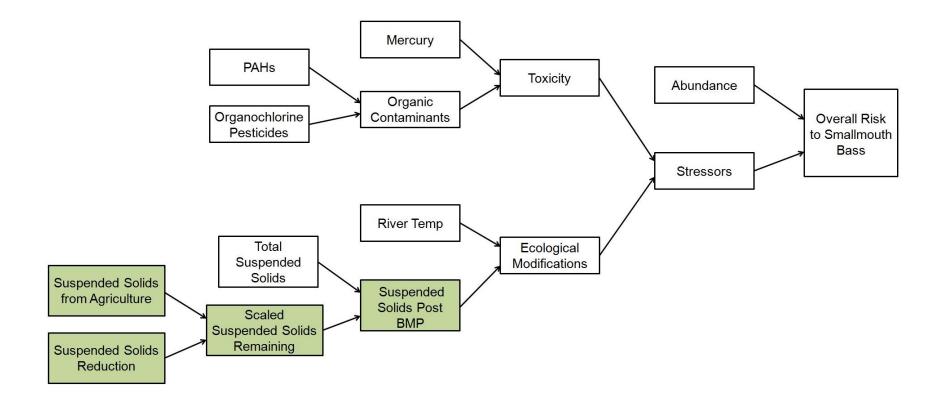
	Potential Habitat	0.0121
	Mercury	0.0893
Region 6	Nest Predation	0.0426
	Winter Air Temperature	0.0136
Smallmouth Bass		
	River Temp	0.0273
Region 2	Mercury	0.0174
-	Total Suspended Solids	0.0011
	River Temp	0.0143
Region 3	Mercury	0.0059
	Organochlorine Pesticide	0.0029
	River Temp	0.0326
Region 4	Mercury	0.0150
	Organochlorine Pesticide	0.0070
	River Temp	0.0517
Region 5	Mercury	0.0413
	Total Suspended Solids	0.0040
	River Temp	0.0488
Region 6	Mercury	0.0149
	Organochlorine Pesticide	0.0035
White Sucker		
	River Temp	0.0777
Region 2	Stream Cover	0.0078
	Mercury	0.0007
	River Temp	0.0564
Region 3	Stream Cover	0.0396
	PAHs	0.0003
	River Temp	0.0998
Region 4	Stream Cover	0.0156
	Mercury	0.0065
	River Temp	0.0498
Region 5	Stream Cover	0.0138
	Mercury	0.0042
	River Temp	0.0416
Region 6	Stream Cover	0.0183
	Mercury	0.0031
Vater Quality Standard		
	Summer Dissolved O ₂	0.0927
Region 2	Deviation from Winter Temp	0.0122
	Bacterial Indicators	0.0103
	Summer Dissolved O ₂	0.1081
Region 3	Bacterial Indicators	0.0393
	Deviation from Winter Discharge	0.0147
Region 4	Summer Dissolved O ₂	0.1673

	_	
	Deviation from Winter Discharge	0.0209
	Deviation from Summer Discharge	0.0200
	Summer Dissolved O ₂	0.1104
Region 5	Bacterial Indicators	0.0348
	Deviation from Winter Discharge	0.0106
	Summer Dissolved O ₂	0.1120
Region 6	Deviation from Winter Discharge	0.0215
	Deviation from Summer Discharge	0.0168
Fishing River Use		
	Summer Dissolved O ₂	0.1019
Region 2	Deviation from Winter Temp	0.0199
	Deviation from Summer Temp	0.0145
	MeHg Body Burden Fish	0.1184
Region 3	Summer Dissolved O ₂	0.1385
	Deviation from Winter Temp	0.0259
	MeHg Body Burden Fish	0.1804
Region 4	Summer Dissolved O ₂	0.1071
rtegion 4	Deviation from Winter Temp &	0.0233
	Deviation from Summer Temp	
	MeHg Body Burden Fish	0.1399
Region 5	Summer Dissolved O ₂	0.0967
	Deviation from Winter Temp	0.0153
	Summer Dissolved O ₂	0.2395
Region 6	Deviation from Winter Temp	0.0132
	Deviation from Summer Temp	0.0132
Swimming River Use		
	Deviation from Winter Temp	0.0384
Region 2	Deviation from Summer Temp	0.0310
	Bacterial Indicators	0.0250
	Bacterial Indicators	0.0548
Region 3	Deviation from Winter Temp	0.0349
	Deviation from Summer Temp	0.0257
	Deviation from Summer Discharge	0.0481
Region 4	Deviation from Winter Discharge	0.0428
rtegion 4	Deviation from Winter Temp &	0.0386
	Deviation from Summer Temp	0.0000
	Bacterial Indicators	0.0568
Region 5	Deviation from Winter Temp	0.0306
	Deviation from Summer Temp	0.0289
	Deviation from Winter Temp	0.0327
Region 6	Deviation from Summer Temp	0.0327
	Bacterial Indicators	0.0202
Boating River Use		
Region 2	Deviation from Winter Temp	0.0567

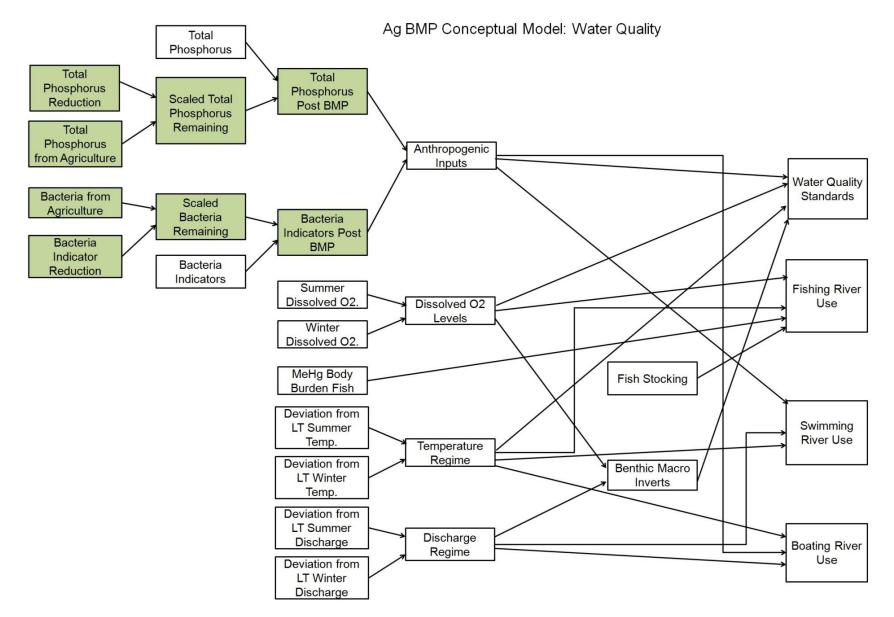
	Deviation from Summer Temp	0.0429
	Bacterial Indicators	0.0224
	Deviation from Winter Temp	0.0538
Region 3	Bacterial Indicators	0.0505
	Deviation from Summer Temp	0.0391
	Deviation from Winter Temp	0.0530
Region 4	Deviation from Summer Temp	0.0530
	Deviation from Summer Discharge	0.0274
	Bacterial Indicators	0.0577
Region 5	Deviation from Winter Temp	0.0403
	Deviation from Summer Temp	0.0356
	Deviation from Winter Temp	0.0414
Region 6	Deviation from Summer Temp	0.0414
	Bacterial Indicators	0.0198


Appendix 8. Percent reduction of risk when top entropy parameters were set to 100% for the lowest state (e.g. Zero or Under LEL).

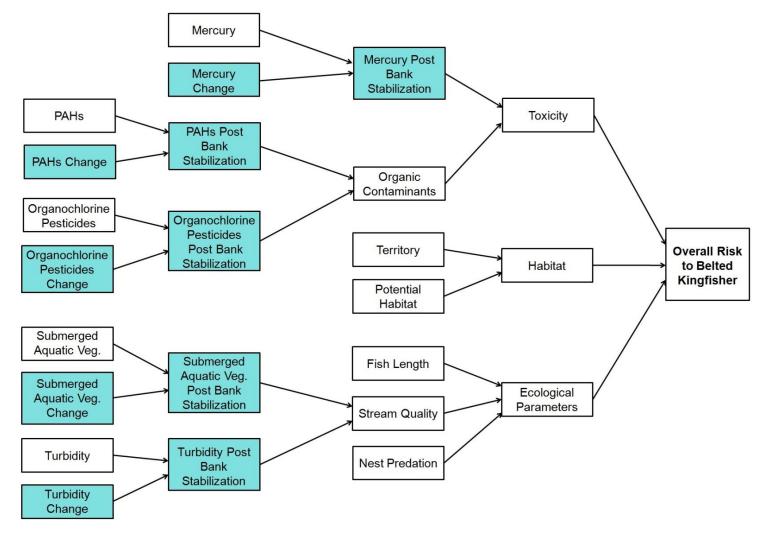
	Altered Input Parameter	Current risk	Risk with input parameter at 100% probability zero risk state	% change in risk
Belted Kingfishe	er en			
	Mercury		1.52 ±1.9	-39.9
Region 2	Fish Length	2.53 ± 2.0	2.07 ±1.9	-18.2
Ũ	Potential Habitat		2.26 ±1.9	-10.7
	Mercury		0.881 ±1.5	-40.1
Region 3	Fish Length	1.47 ± 1.8	0.958 ±1.5	-34.8
	Potential Habitat		1.20 ±1.7	-18.4
	Mercury		1.24 ±1.7	-42.1
Region 4	Fish Length	2.14 ± 2.0	1.67 ±1.9	-22.0
Ū	Territory		1.86 ±2.0	-13.1
	Mercury		1.29 ±1.8	-40.8
Region 5	Fish Length	2.18 ±2.1	1.73 ±1.9	-20.6
	Territory		1.64 ±2.0	-24.8
	Fish Length		1.04 ±1.6	-31.1
Region 6	Mercury	1.51 ±1.8	1.38 ±1.8	-8.6
_	Territory		1.11 ±1.6	-26.5
Carolina Wren				
	Nest Predation		0.917 ±1.3	-18.1
Region 2	Potential Habitat	1.12 ±1.5	0.838 ±1.3	-25.2
	Winter Air Temperature		0.537 ±1.2	-52.1
	Mercury		1.29 ±1.5	-32.5
Region 3	Nest Predation	1.91 ±1.8	1.66 ±1.6	-13.1
	Winter Air Temperature		1.23 ±1.7	-35.6
	Mercury		2.41 ±1.8	-19.7
Region 4	Nest Predation	3.00 ±1.9	2.81 ±1.8	-6.3
	Winter Air Temperature		2.36 ±2.0	-21.3
	Mercury		1.94 ±1.8	-6.7
Region 5	Nest Predation	2.85 ±1.8	2.66 ±1.8	-3.2
	Potential Habitat		2.76 ±1.9	-3.2
	Mercury		1.61 ±1.8	-34.3
Region 6	Nest Predation	2.45 ±1.9	2.23 ±1.8	-9.0
	Winter Air Temperature		1.80 ±1.9	-26.5
Smallmouth Bas	S			
$ $ \top	River Temp		1.54 ±2.2	-34.5
Region 2	Mercury	2.35 ±2.4	1.43 ±2.1	-39.1
	Total Suspended Solids		2.33 ±2.4	-0.9
	River Temp		2.16 ±2.4	-19.7
Region 3	Mercury	2.69 ±2.4	1.34 ±2.1	-50.2
	Organochlorine Pesticide		2.62 ±2.4	-2.6
Region 4	River Temp	4.31 ±2.2	3.57 ±2.1	-17.2
rtegion 4	Mercury	7.01 £2.2	2.25 ±2.5	-47.8


	Organochlorine Pesticide		4.22 ±2.2	-2.1
	River Temp		3.77 ±2.7	-15.8
Deciar 5	Mercury	4.48 ±2.4	1.79 ±2.6	-60.0
Region 5	Total Suspended Solids	4.40 ± 2.4	4.42 ±2.4	-00.0
			$\frac{4.42 \pm 2.4}{2.53 \pm 2.5}$	-1.3
Decise C	River Temp	2 20 . 2 4		
Region 6	Mercury	3.30 ±2.4	1.63 ±2.2	-50.6
White Outsham	Organochlorine Pesticide		3.22 ±2.4	-2.4
White Sucker	Divertore		0.77 . 0.7	00.5
Desire	River Temp		2.77 ±2.7	-23.5
Region 2	Stream Cover	3.62 ±2.6	2.14 ±2.6	-40.9
	Mercury		3.53 ±2.6	-2.5
	River Temp		2.05 ±2.5	-34.1
Region 3	Stream Cover	3.11 ±2.5	2.49 ±2.6	-19.9
	PAHs		3.11 ±2.5	0.0
	River Temp		1.07 ±2.1	-55.6
Region 4	Stream Cover	2.41 ±2.6	2.22 ±2.5	-7.9
	Mercury		1.85 ±2.4	-23.2
	River Temp		0.505 ±1.4	-62.0
Region 5	Stream Cover	1.33 ±2.0	1.19 ±1.9	-10.5
	Mercury		1.11 ±1.9	-16.5
	River Temp		0.914 ±1.8	-46.2
Region 6	Stream Cover	1.70 ±2.2	1.41 ±2.1	-17.1
	Mercury		1.48 ±2.1	-12.9
Water Quality				
	Summer Dissolved O ₂		3.72 ±2.0	-24.5
Region 2	Deviation from Winter Temp	4.93 ±1.5	4.64 ±1.6	-5.9
	Bacterial Indicators		4.86 ±1.6	-1.4
	Summer Dissolved O ₂		3.98 ±1.9	-12.3
Region 3	Bacterial Indicators	4.54 ±1.8	4.30 ±1.9	-5.3
U	Deviation from Winter Discharge		4.13 ±2.1	-9.0
	Summer Dissolved O ₂		3.29 ±2.1	-26.6
	Deviation from Winter Discharge	4.40 4.0	4.14 ±2.2	-7.6
Region 4	Deviation from Summer	4.48 ±1.9		
	Discharge		4.14 ±2.2	-7.6
	Summer Dissolved O ₂		4.07 ±1.9	-15.9
Region 5	Bacterial Indicators	4.84 ±1.6	4.66 ±1.7	-3.7
U	Deviation from Winter Discharge		4.52 ±1.9	-6.6
	Summer Dissolved O ₂		3.83 ±2.0	-11.1
	Deviation from Winter Discharge		3.73 ±2.2	-13.5
Region 6	Deviation from Summer	4.31 ±1.9		
	Discharge		3.87 ±2.2	-10.2
Fishing River	Use			
	Summer Dissolved O ₂		0.515 ±0.89	-67.8
Region 2	Deviation from Winter Temp	1.60 ±1.6	1.20 ±1.4	-25.0
-	Deviation from Summer Temp		1.33 ±1.5	-16.9
	MeHg Body Burden Fish		1.24 ±1.5	-19.5
Region 3	Summer Dissolved O ₂	1.54 ±1.8	0.924 ±1.4	-40.0
Region S				

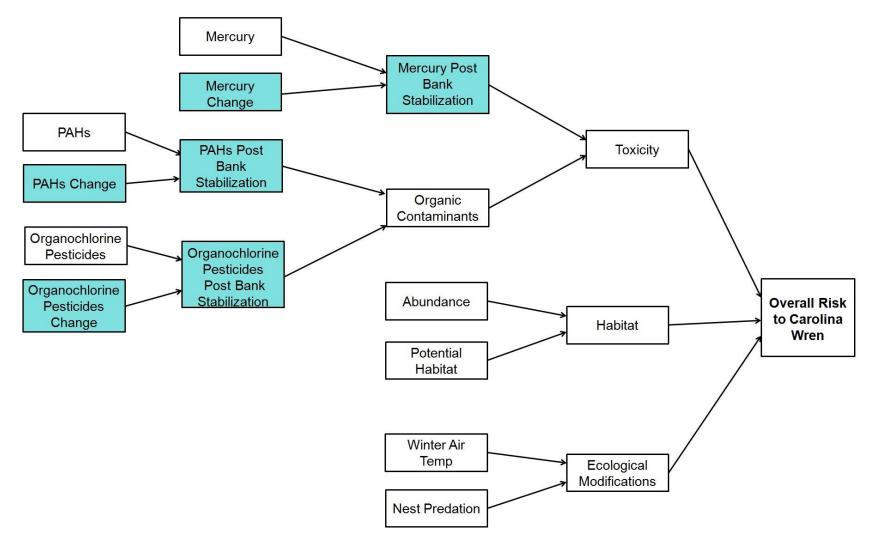
	Malla Dadu Durdan Fish		4.50 . 4.7	05.7
Region 4	MeHg Body Burden Fish		1.59 ±1.7	-25.7
	Summer Dissolved O ₂	2.14 ±2.0	1.24 ±1.7	-42.1
	Deviation from Winter Temp & Deviation from Summer Temp		1.68 ±1.8	-21.5
	MeHg Body Burden Fish		1.42 ±1.6	-24.5
Region 5	Summer Dissolved O ₂	1.88 ±1.8	1.15 ±1.6	-38.8
	Deviation from Winter Temp		1.47 ±1.7	-21.8
	Summer Dissolved O ₂		0.649 ±0.95	-45.5
Region 6	Deviation from Winter Temp	1.19 ±1.5	0.876 ±1.3	-26.4
	Deviation from Summer Temp		0.876 ±1.3	-26.4
Swimming Riv	er Use			·
	Deviation from Winter Temp		3.98 ±1.6	-11.2
Region 2	Deviation from Summer Temp	4.48 ±1.5	4.13 ±1.6	-7.8
-	Bacterial Indicators		4.38 ±1.5	-2.2
	Bacterial Indicators		4.41 ±1.5	-5.0
Region 3	Deviation from Winter Temp	4.64 ±1.4	4.23 ±1.6	-8.8
-	Deviation from Summer Temp		4.34 ±1.6	-6.5
	Deviation from Summer Discharge		3.79 ±1.9	-11.4
Region 4	Deviation from Winter Discharge	4.28 ±1.6	3.81 ±1.9	-11.0
	Deviation from Winter Temp & Deviation from Summer Temp		3.80 ±1.8	-11.2
	Bacterial Indicators		4.60 ±1.4	-4.0
Region 5	Deviation from Winter Temp	4.79 ±1.4	4.36 ±1.5	-9.0
	Deviation from Summer Temp		4.43 ±1.5	-7.5
	Deviation from Winter Temp	4.63 ±1.4	4.16 ±1.6	-10.2
Region 6	Deviation from Summer Temp		4.16 ±1.6	-10.2
	Bacterial Indicators		4.55 ±1.4	-1.7
Boating River	Use			
	Deviation from Winter Temp		3.74 ±1.8	-14.8
Region 2	Deviation from Summer Temp	4.39 ±1.6	3.97 ±1.7	-9.6
	Bacterial Indicators		4.29 ±1.6	-2.3
	Deviation from Winter Temp		4.01 ±1.8	-11.9
Region 3	Bacterial Indicators	4.55 ±1.6	4.31 ±1.6	-5.3
	Deviation from Summer Temp		4.15 ±1.7	-8.8
	Deviation from Winter Temp		3.63 ±1.9	-13.2
Region 4	Deviation from Summer Temp	4.18 ±1.7	3.63 ±1.9	-13.2
	Deviation from Summer Discharge	4.10 ±1.7	3.8 ±1.8	-9.1
	Bacterial Indicators		4.49 ±1.5	-4.5
Region 5	Deviation from Winter Temp	4.70 ±1.5	4.20 ±1.7	-10.6
0	Deviation from Summer Temp		4.29 ±1.7	-8.7
	Deviation from Winter Temp		4.02 ±1.7	-11.5
Region 6	Deviation from Summer Temp	4.54 ±1.5	4.02 ±1.7	-11.5
Region o	Bacterial Indicators		4.47 ±1.5	-1.5


Appendix 9. Conceptual models for the Agriculture Best Management Practices (Ag BMPs) management scenario. Management nodes for the Ag BMPs are shaded green.

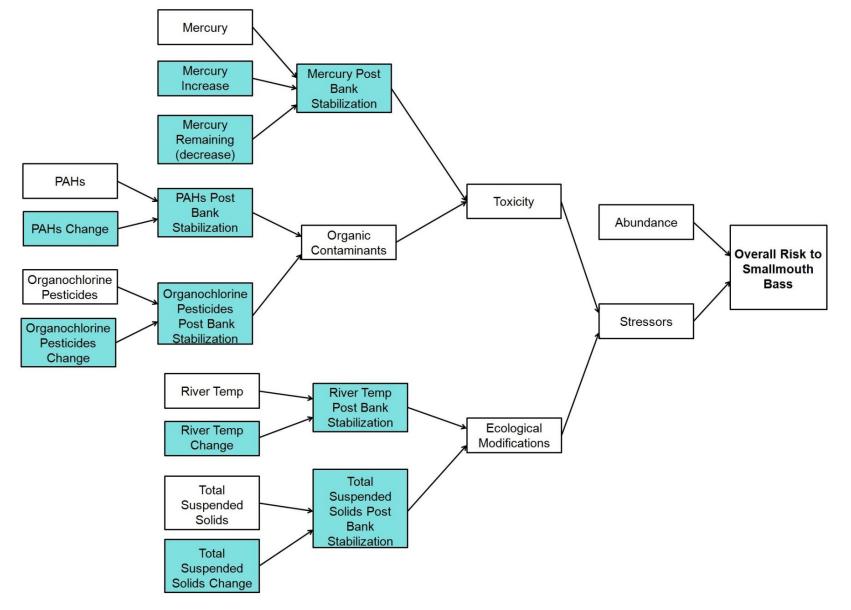
A9-1. Ag BMP conceptual model for Belted Kingfisher.

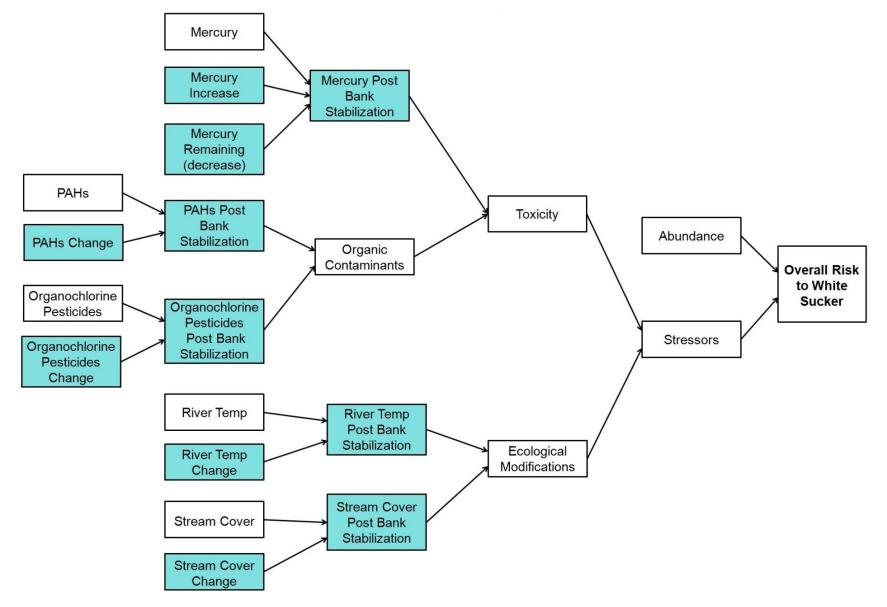


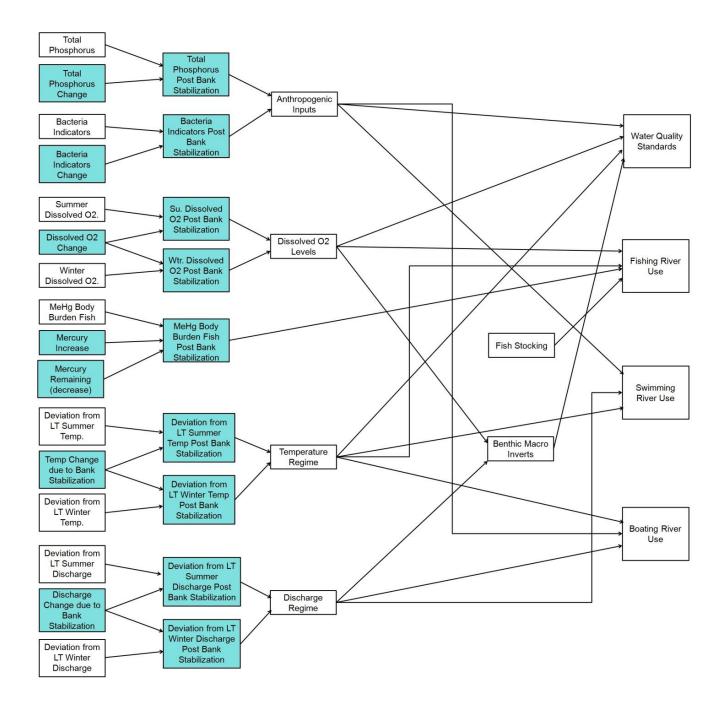
A9-2. Ag BMP conceptual model for smallmouth bass.



A9-3. Ag BMP conceptual model for water quality endpoints.


Appendix 10. Conceptual models for the Bank Stabilization management scenario. Management nodes for the bank stabilization are shaded blue.


A10-1. Bank stabilization conceptual model for Belted Kingfisher.


A10-2. Bank stabilization conceptual model for Carolina Wren.

A10-3. Bank stabilization conceptual model for smallmouth bass.

A10-4. Bank stabilization conceptual model for white sucker.

A10-5. Bank stabilization conceptual model for water quality endpoints.

- **Appendix 11.** Model parameterization tables for Ag BMPs management scenario. Any variables that were carried over from the initial model without modifications are not included in the table, and it can be assumed the ranking scheme remains unchanged. Model parameterization for the initial model can be found in **Appendix 3**.
- **A11-1.** Summary explanation of additional input parameters for Ag BMPs management BNs for Belted Kingfisher. This includes parameters and definitions; states and associated ranges, and justification with corresponding references.

Parameter	States	Range	Justification	References
Suspended solids from	Zero	0-25%		
Agriculture	Low	26-50%	Estimates of percent cover and TSS from agricultural lands from USEPA 2010	USEPA 2010
Probability of percent	Med	51-75%		Engineering Concepts, Inc. 2009
suspended solids from agricultural land (%)	High	76-100%	2010	
Suspended solids	Zero	0-15%	Cullum et al. (2006)- 58% reduction in	Cullum et al. 2006
reduction	Low	16-31%	TSS (cultural BMP only)	Sheffield et al. 1997
Probability of percent	Med	32-47%		
suspended solids reduction via Ag BMP (%)	High	48-100%	Sheffield et al. (1997)- 90% reduction, flow-weighted study	USEPA 2010 Engineering Concepts, Inc. 2009
Scaled suspended	Zero	0-52%		
solids remaining	Low	53-68%	Determined by CPT via two parent	
Probability of percent of	Med	69-84%	nodes (Land-use and suspended solids reduction)	Engineering Concepts, Inc. 2009
suspended solids remaining (%)	High	85-100%		
Turbidity	Zero	60-70 cm	Come realized from initial DIC model	Drees 1005
_	Low	30-60 cm	Same ranking from initial BK model (see Appendix 3)	Prose 1985
Probability of Secchi depth	Med	15-30 cm	(See Appendix 3)	Rankings from Summers 2012
(cm)	High	<15 cm		Rankings norn Gammers 2012
Turbidity post BMP	Zero	>60 cm		Prior probabilities determined by CPT
Probability of Secchi depth	Low	30-60 cm	Same ranking from initial SMB model	via parent nodes
level after Ag BMPs are Med	15-30 cm	(see Appendix 3)	Rankings from Summers 2012	
implemented (cm)	High	<15 cm		

A11-2. Summary explanation of input parameters in Ag BMPs management BNs for smallmouth bass. This includes parameter and parameter definition; states and associated ranges, and justification for ranges with corresponding references.

Parameter	States	Range	Justification	References
Suspended solids from Agriculture	Zero	0-25%		
	Low	26-50%	Estimates of percent cover and TSS from	USEPA 2010
Probability of percent suspended solids from	Med	51-75%	agricultural lands from USEPA 2010	Engineering Concepts, Inc. 2009
agricultural land (%)	High	76-100%		
Suspended solids	Zero	0-15%	Cullum et al. (2006)- 58% reduction in	Cullum et al. 2006
reduction	Low	16-31%	TSS (cultural BMP only)	Sheffield et al. 1997
Probability of percent	Med	32-47%	Sheffield et al. (1997)- 90% reduction,	USEPA 2010
suspended solids reduction via Ag BMP (%)	High	48-100%	flow-weighted study	Engineering Concepts, Inc. 2009
Scaled suspended solids remaining	Zero	0-52%	Determined by CPT via two parent nodes (Land-use and suspended solids reduction)	
solius remaining	Low	53-68%		
Probability of percent of suspended solids	Med	69-84%		Engineering Concepts, Inc. 2009
remaining (%)	High	85-100%		
Total Suspended Solids	Zero	0-25 mg/L		Hubert and Lackey 1980; Carter
	Low	25-80 mg/L	Same ranking from initial SMB model	et al. 2010 USEPA 2003
Probability of suspended	Med	80-200 mg/L	(see Appendix 3)	03EFA 2003
solids (mg/L)	High	200-650 mg/L		Rankings from Summers 2012
Suspended Solids post	Zero	0-25 mg/L		
BMP	Low	25-80 mg/L	Same ranking from initial SMB model (see Appendix 3)	Prior probabilities determined by CPT via parent nodes
Probability of suspended solids level after Ag BMPs	Med	80-200 mg/L		Rankings from Summers 2012
are implemented (mg/L)	High	200-650 (mg/L)		

A11-3. Summary explanation of input parameters in Ag BMPs management BNs for water quality endpoints (Water Quality Standards, and Fishing, Swimming, and Boating River Use). This includes parameters and definition; states and associated ranges, and justification with corresponding references.

Parameter	States	Range	Justification	References
Total Phosphorus from	Zero	0-25%		
Agriculture	Low	26-50%	TMDL study estimates 58% total	
Probability of percent total	Med	51-75%	phosphorus comes from agriculture	Engineering Concepts, Inc. 2009
phosphorus from agricultural land (%)	High	76-100%		
Total Phosphorus	Zero	0-15%		Cullum et al. 2006
reduction	Low	16-43%	Cullum et al (2006) reports 32%	Sheffield et al. 1997
Probability of percent total phosphorus reduction via Ag	Med	44-69%	reduction in total phosphorus	Engineering Concepts, Inc. 2009
BMP (%)	High	70-100%		USEPA 2010
Scaled total Phosphorus	Zero	0-30%	TMDL study estimates a ≥70%	
remaining	Low	31-56%	reduction (or ≤30% remaining) in total phosphorus from agricultural land use is necessary to meet TMDL requirements	Facineering Concente Inc. 2000
Probability of percent of total	Med	57-84%		Engineering Concepts, Inc. 2009
phosphorus remaining (%)	High	85-100%		
	Zero	<0.1 mg/L		Black et al. 2010
Total Phosphorus	Low	0.1-0.3 mg/L	Same ranking from initial WQ model	USEPA 2006
Probability of total	Med	0.31-0.5 mg/L	(see Appendix 4)	Sprague 2009
phosphorus (mg/L)	High	0.51-5.0 mg/L		National Water Quality Assessment Program, USGS
Total Phosphorus post BMP	Zero	<0.1 mg/L		Prior probabilities determined by CPT
	Low	0.1-0.3 mg/L	Same ranking from initial WQ model	via parent nodes
Probability of total phosphorus level after Ag	Med	0.31-0.5 mg/L	(see Appendix 4)	Rankings from Ayre et al. Report
BMPs were implemented (mg/L)	High	0.51-5.0 mg/L		2013-1
Bacteria indicators from Agricultural land	Zero	0-25%		
	Low	26-50%	TMDL study estimates 89.6% E.coli	Engineering Concepts, Inc. 2009
Probability of percent	Med	51-75%	comes from agriculture	USEPA 2010
bacteria indicators from agricultural land (%)	High	76-100%		

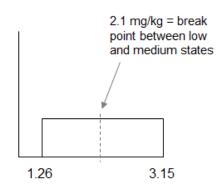
Bacteria indicator reduction	Zero Low	0-15% 16-55%	Sheffield et al (1997) reported 51%	Cullum et al. 2006 Sheffield et al. 1997
Probability of percent bacteria indicator reduction	Med	56-94%	reduction fecal coliform and 77% reduction fecal streptococci	Engineering Concepts, Inc. 2009
via Ag BMP (%)	High	95-100%		USEPA 2010
Scaled Bacteria indicators	Zero	0-5%	TMDL study estimates ≥95%	
remaining	Low	6-44%	reduction (or ≤5% remaining) in <i>E.coli</i>	
	Med	45-84%	from ag. land use is necessary to meet TMDL requirements	Engineering Concepts, Inc. 2009
Probability of percent bacteria remaining (%)	High	85-100%	85-100% remaining considered "high"	
Bacteria indicators	Zero	0-200 CFU/100 mL		VDEQ 2009
Probability of fecal bacteria	Moderate	200-1000 CFU/100 mL	Same ranking from initial WQ model (see Appendix 4)	Rankings from Ayre et al. Report
(CFU/100mL)	High	1000-2000 CFU/100 mL		2013-1
Bacteria indicators post BMP	Zero	0-200 CFU/100 mL		Prior probabilities determined by CPT via parent nodes
Probability of fecal bacteria level after Ag BMPs were	Moderate	200-1000 CFU/100 mL	Same ranking from initial WQ model (see Appendix 4)	Rankings from Ayre et al. Report
implemented (CFU/100mL)	High	>1000 CFU/100 mL		2013-1

Appendix 12. Example of a Conditional Probability Table (CPT) calculation for the management nodes. This example is from the bank stabilization management option for the Carolina Wren and specifically relates to a CPT calculation in the Mercury Post Bank Stabilization node.

<u>Hg States</u> zero: 0.0 -1.2 mg/kg low: 1.2-2.1 mg/kg med: 2.1-2.9 mg/kg high: 2.9-10 mg/kg Hg Change Increase: 5.1 to 50% No Change: -5 to 5% Decrease: -5.1 to -50%

*Lets calculate the CPT line for the combination of <u>Low Hg</u> and <u>Increase</u> (from the Hg States and Hg Change above – blue text).

Lower Bound


[(1.2 mg/kg)*0.051] + 1.2 = **1.2612** mg/kg

This represents the smallest increase in mercury concentration with this combination Upper Bound

[(2.1 mg/kg)*0.5] + 2.1 = 3.15 mg/kg

This represents the highest concentration possible with this combination

*Now we need to calculate the probability of each state in the child node. We will assume a uniform distribution between the upper and lower bound.

Area: 3.15 – 1.26 = 1.8 % med risk state: 3.15 – 2.1 = 1.05 <u>1.05</u> = 0.52 * 100 = **52%** 1.8 % low risk state: 100% – 52% = **48**% Distributions for Mercury Post Bank Stabilization node, CPT combination: low Hg & Increase Hg Change)

zero: 0% - lowest concentration is 1.2612 mg/kg

low: 48% med: 52% high: 0% - highest concentration

is only 3.15 mg/kg

- **Appendix 13.** Model parameterization for Bank Stabilization management scenario. Any variables that were carried over from the initial model without modifications are not included in the table, and it can be assumed the ranking scheme remains unchanged. Model parameterization for the initial model can be found in **Appendix 3.**
- **A13-1.** Summary explanation of input parameters specific to bank stabilization management BNs for Belted Kingfisher. This includes parameters and definitions; states and associated ranges, and justification with corresponding references.

Parameter	States	Range	Justification	References
Mercury	Zero Low	0.00-0.40 ppm 0.41-1.00 ppm	Same ranking from initial BK model	Evers et al. 2004 Lane et al. 2004; White 2007
Probability of mercury bird blood concentration (ppm)	Med High	1.01-2.00 ppm 2.01-10 ppm	(see Appendix 3)	Rankings from Summers 2012
Mercury change	Increase	5.1 to 25%	5% change in bird blood mercury considered within natural variation	
Probability of change in mercury concentration due to bank stabilization (%)	No change Decrease	5 to - 5% -5.1 to -25%	25% used as lower or upper bound of variation due to bank stabilization	Anchor QEA LLC et al. (2013)
Mercury post Bank Stabilization	Zero	0.00-0.40 ppm		Prior probabilities determined by
Probability of mercury bird	Low	0.41-1.00 ppm	Same ranking from initial BK model (see Appendix 3)	CPT via parent nodes
blood concentration after bank stabilization is	Med	1.01-2.00 ppm		Rankings from Summers 2012
implemented (ppm)	High	>2.01 ppm		
PAHs	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Same ranking from initial BK model	Buchman 2008
Probability of PAH concentration (ug/kg)	Over NOAA's LEL for sediment	4,000-8,000 (ug/kg)	(see Appendix 3)	Rankings from Summers 2012
PAH change	Increase	5 to 50%	5% change in PAH considered within natural variation	
Probability of change in PAH concentration due to bank	No change	5 to -5 %	Frequencies from expert elicitation	Expert elicitation, Anchor QEA
stabilization (%)	Decrease	-5 to -50%	survey scenarios	
PAH post Bank Stabilization	Under NOAA's LEL for sediment	≤4,000 (ug/kg)		Prior probabilities determined by CPT via parent nodes
Probability of PAH concentration after bank stabilization is implemented (ug/kg)	Over NOAA's LEL for sediment	>4,000 (ug/kg)	Same ranking from initial BK model (see Appendix 3)	Buchman 2008 Rankings from Summers 2012

Organochlorine Pesticides Probability of Organochlorine pesticide concentration (ug/kg)	Lower than NOAA's Chronic Level for water Higher than NOAA's Chronic Level for water	*pesticide specific (ug/kg) *pesticide specific (ug/kg)	Same ranking from initial BK model (see Appendix 3)	Buchman 2008 Rankings from Summers 2012
Organochlorine Pesticides change	Increase	5 to 50%	5% change in organochlorine pesticides considered within natural variation	
Probability of change in PAH	No change	5 to -5 %		Expert elicitation, Anchor QEA
concentration due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Organochlorine Pesticides post Bank Stabilization Probability of Organochlorine	Lower than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Same ranking from initial BK model	Prior probabilities determined by CPT via parent nodes
Pesticides concentration after bank stabilization is implemented (ug/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	(see Appendix 3)	Buchman 2008 Rankings from Summers 2012
Submerged Aquatic	Zero	0-20%		D 1005
Vegetation (SAV)	Low	20-40%	Same ranking from initial BK model	Prose 1985
Probability of percent SAV	Med	40-70%	(see Appendix 3)	Rankings from Summers 2012
cover (%)	High	70-100%		· · ··································
Submerged Aquatic Vegetation (SAV) change	Increase	5 to 50%	5% change in SAV considered within natural variation	
	No change	5 to -5 %	Fragues size from every elisitetien	Expert elicitation, Anchor QEA
Probability of change in SAV due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Submerged Aquatic Vegetation (SAV) post Bank	Zero	0-20%		
Stabilization	Low	20-40%	Same ranking from initial BK model	Prose 1985
Probability of SAV cover after	Med	40-70%	(see Appendix 3)	Rankings from Summers 2012
bank stabilization is implemented (%)	High	70-100%		
Turbidity	Zero	60-70 cm		Prose 1985
	Low	30-60 cm	Same ranking from initial BK model	F1056 1900
Probability of secchi depth (cm)	Med High	15-30 cm 0-15 cm	(see Appendix 3)	Rankings from Summers 2012
(•••••)	i ligit	0-13 011		

Turbidity change	Increase	5 to 50%	5% change turbidity considered within	
Probability of change in turbidity due to bank	No change	5 to -5 %	natural variation Frequencies from expert elicitation	Expert elicitation, Anchor QEA
stabilization (%)	Decrease	-5 to -50%	survey scenarios	
Turbidity post Bank	Zero	>60 cm		
Stabilization	Low	30-60 cm	Same ranking from initial BK model	Prose 1985
Probability turbidity Secchi depth after bank stabilization	Med	15-30 cm	(see Appendix 3)	Rankings from Summers 2012
is implemented (cm)	High	<15 cm		_

A13-2. Summary explanation of input parameters in bank stabilization management BNs for Carolina Wren. This includes parameters and definitions; states and associated ranges, and justification with corresponding references.

Parameter	States	Range	Justification	References
Mercury	Zero	0-1.2 ppm		Jackson et al. 2011a
increary	Low	1.2-2.1 ppm	Same ranking from initial CW model	Cristol et al. 2008
Probability of mercury bird	Med	2.1-2.9 ppm	(see Appendix 3)	
blood concentration (ppm)	High	>2.9 ppm		Rankings from Summers 2012
Mercury change	Increase	5.1 to 25%	5% change in bird blood mercury	
Probability of change in	No change	5 to -5%	considered within natural variation	Anchor QEA LLC et al. (2013)
mercury concentration due to bank stabilization (%)	Decrease	-5.1 to -25%	25% used as lower or upper bound of variation due to bank stabilization	
Mercury post Bank	Zero	0-1.2 ppm		
Stabilization	Low	1.2-2.1 ppm	Same ranking from initial CW model	Prior probabilities determined by CPT via parent nodes
Probability of mercury bird blood concentration after	Med	2.1-2.9 ppm	(see Appendix 3)	
blood concernitation after bank stabilization is implemented (ppm)	High	>2.9 ppm		Rankings from Summers 2012
PAHs	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Same ranking from initial CW model	Buchman 2008
Probability of PAH concentration (ug/kg)	Over NOAA's LEL for sediment	4,000-8,000 (ug/kg)	(see Appendix 3)	Rankings from Summers 2012

PAH change	Increase	5 to 50%	5% change in PAH considered within	
Probability of change in	No change	5 to -5 %	natural variation	Expert elicitation, Anchor QEA
PAH concentration due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
PAH post Bank Stabilization	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Same ranking from initial CW model	Prior probabilities determined by CPT via parent nodes
Probability of PAH concentration after bank stabilization is implemented (ug/kg)	Over NOAA's LEL for sediment	>4,000 (ug/kg)	(see Appendix 3)	Buchman 2008 Rankings from Summers 2012
Organochlorine Pesticides	Lower than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Same ranking from initial CW model	Buchman 2008
Probability of Organochlorine pesticide concentration (ug/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	(see Appendix 3)	Rankings from Summers 2012
Organochlorine Pesticides change	Increase	5 to 50%	5% change in organochlorine pesticides considered within natural variation	
Drobobility of obongo in	No change	5 to -5 %		Expert elicitation, Anchor QEA
Probability of change in PAH concentration due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Organochlorine Pesticides post Bank Stabilization	Lower than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Some replying from initial CM/ model	Prior probabilities determined by CPT via parent nodes
Probability of Organochlorine Pesticides concentration after bank stabilization is implemented (ug/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Same ranking from initial CW model (see Appendix 3)	Buchman 2008 Rankings from Summers 2012

A13-3.	Summary explanation of input parameters specific to bank stabilization management BNs for smallmouth bass. This
	includes parameters and definitions; states and associated ranges, and justification with corresponding references.

Parameter	States	Range	Justification	Data sources
Mercury	Zero	<0.2 mg/kg		
_	Low	0.21-1.1 mg/kg	Same ranking from initial SMB model	Dillon et al. 2010
Probability of fish fillet MeHg concentration	Med	1.2-2.8 mg/kg	(see Appendix 3)	Rankings from Summers 2012
(mg/kg)	High	>2.9 mg/kg		5
Mercury increase	Zero	0-162.5%		
	Low	162.6-325%	Based on pore water Hg monitoring	
Probability of increase in	Med	325.1-487.5%	values from bank stabilization pilot	Anchor QEA LLC et al. (2013)
MeHg concentration due to bank stabilization (%)	High	487.6-650%	study	
Mercury remaining	Zero	0-10% (remaining)		
(decrease)	Low	11-40%	Based on porewater Hg monitoring	
Probability of decrease in	Med	41-70%	values from bank stabilization pilot study	Anchor QEA LLC et al. (2013)
MeHg concentration due to bank stabilization (%)	High	71-100%	Study	
Mercury post Bank Stabilization	Zero	<0.2 mg/kg		
	Low	0.21-1.1 mg/kg	Same ranking from initial SMB model	Prior probabilities determined by CPT via parent nodes
Probability of MeHg fish fillet concentration after	Med	1.2-2.8 mg/kg	(see Appendix 3)	
bank stabilization is implemented (mg/kg)	High	>2.9 mg/kg		Rankings from Summers 2012
PAHs	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Same ranking from initial SMB model	Buchman 2008
Probability of PAH concentration (ug/kg)	Over NOAA's LEL for sediment	4,000-8,000 (ug/kg)	(see Appendix 3)	Rankings from Summers 2012
PAH change	Increase	5 to 50%	5% change in PAH considered within natural variation	
Probability of change in	No change	5 to -5 %		Expert elicitation, Anchor QEA
PAH concentration due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
PAH post Bank Stabilization	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Same ranking from initial SMB model (see Appendix 3)	Prior probabilities determined by CPT via parent nodes

Probability of PAH				Rankings from Summers 2012
concentration after bank	Over NOAA's LEL for	>4,000 (ug/kg)		
stabilization is	sediment	>4,000 (ug/kg)		
implemented (ug/kg)				
Organochlorine Pesticides	Lower than NOAA's	*pesticide specific		D 1 0000
	Chronic Level for water	(ug/kg)	Same ranking from initial SMB model	Buchman 2008
Probability of Organochlorine pesticide	Higher than NOAA's	*pesticide specific	(see Appendix 3)	Rankings from Summers 2012
concentration (ug/kg)	Chronic Level for water	(ug/kg)		
Organochlorine	Increase	5 to 50%	5% change in organochlorine pesticides	
Pesticides change			considered within natural variation	
Probability of change in	No change	5 to -5 %		Expert elicitation, Anchor QEA
PAH concentration due to	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
bank stabilization (%)	Decrease	010 0070		
Organochlorine Pesticides post Bank	Lower than NOAA's	*nontinida anasifia		
Stabilization	Chronic Level for water	*pesticide specific (ug/kg)		Frequencies determined by CPT
Probability of		(\$9,15)	Same ranking from initial SMB model (see Appendix 3)	via parent nodes
Organochlorine Pesticides				
concentration after bank	Higher than NOAA's	*pesticide specific		Rankings from Summers 2012
stabilization is	Chronic Level for water	(ug/kg)		
implemented (ug/kg)	7or0	20-26 °C		Horning and Pearson 1973,
River Temperature	Zero			Shutter et al. 1980, Amour 1993,
-	Low	17-19.9 or 26.1-29 °C	Same ranking from initial SMB model	Kerr 1966, Stauffer et al. 1976,
Probability of river	Med	15-16.9 or 29.1-31.9 °C	(see Appendix 3)	Cherry et al. 1975, 1977
temperature (°C)	High	≤14.9 or ≥32 °C		Rankings from Ayre et al.
River Temperature				Report 2013-1
change	Increase	5 to 50%	5% change in river temp considered	
•	No change	5 to -5 %	within natural variation	Expert elicitation, Anchor QEA
Probability of change in river temp due to bank	0		Frequencies from expert elicitation	
stabilization (%)	Decrease	-5 to -50%	survey scenarios	
River Temperature post	Zero	20-26 °C		Prior probabilities determined by
Bank Stabilization	Low	17-19.9 or 26.1-29 °C	Same ranking from initial SMB model	CPT via parent nodes
Probability of river temp bank stabilization is	Med	15-16.9 or 29.1-31.9 °C	(see Appendix 3)	
implemented (°C)	High	≤14.9 or ≥32 °C		Rankings from Summers 2012
Total Suspended Solids	Zero	0-25 mg/L	Same ranking from initial SMB model	Hubert and Lackey 1980; Carter
i stai suspended sonds	Low	25-80 mg/L	(see Appendix 3)	et al. 2010
	2011	20 00 mg/L	(/	

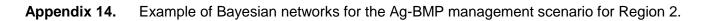
Probability of suspended	Med	80-200 mg/L		USEPA 2003
solids (mg/L)	High	>200 mg/L		Rankings from Summers 2012
Total Suspended Solids change	Increase	5 to 50%	5% change in TSS considered within natural variation	
Probability of change in	No change	5 to -5 %		Expert elicitation, Anchor QEA
total suspended solids due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Suspended solids post Bank Stabilization	Zero	0-25 mg/L		Prior probabilities determined by
Probability of total	Low	25-80 mg/L	Same ranking from initial SMB model	CPT via parent nodes
suspended solids bank stabilization is	Med	80-200 mg/L	(see Appendix 3)	Rankings from Summers 2012
implemented (mg/L)	High	>200 mg/L		

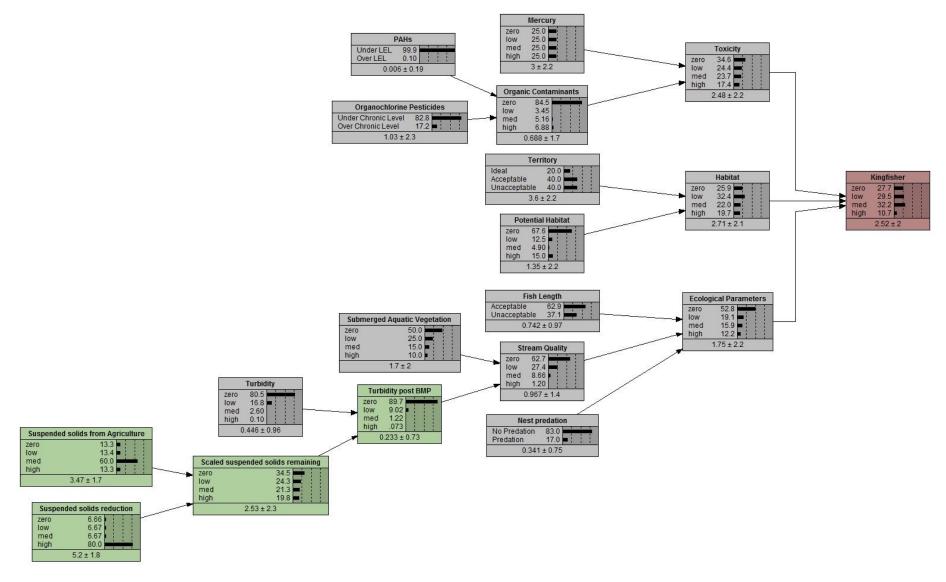
A13-4.	Summary explanation of input parameters in the bank stabilization management BNs for white sucker. This includes
	parameters and definitions; states and associated ranges, and justification with corresponding references.

Parameters	States	Range	Justification	Data sources
Mercury	Zero	<0.2 mg/kg		Dillon et al. 2010
Probability of fish fillet	Low	0.21-1.1 mg/kg	Same ranking from initial WS model	Dillott et al. 2010
MeHg concentration	Med	1.2-2.8 mg/kg	(see Appendix 3)	Rankings from Summers 2012
(mg/kg)	High	>2.9 mg/kg		_
Mercury increase	Zero	0-162.5%	Based on pore water Hg monitoring	
Probability of increase in	Low	162.6-325%	values from bank stabilization pilot	Anchor QEA LLC et al. (2013)
MeHg concentration due	Med	325.1-487.5%	study	
to bank stabilization (%)	High	487.6-650%		
Mercury remaining (decrease)	Zero	0-10% (remaining)		
. ,	Low	11-40%	Based on porewater Hg monitoring	
Probability of decrease in MeHg concentration due	Med	41-70%	values from bank stabilization pilot study	Anchor QEA LLC et al. (2013)
to bank stabilization (%)	High	71-100%		
Mercury post Bank Stabilization	Zero	<0.2 mg/kg		Prior probabilities determined by
Probability of MeHg fish	Low	0.21-1.1 mg/kg	Same ranking from initial WS model	CPT via parent nodes
fillet concentration after bank stabilization is	Med	1.2-2.8 mg/kg	(see Appendix 3)	Rankings from Summers 2012
implemented (mg/kg)	High	>2.9 mg/kg		
PAHs	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Same ranking from initial WS model	Buchman 2008
Probability of PAH concentration (ug/kg)	Over NOAA's LEL for sediment	4,000-8,000 (ug/kg)	(see Appendix 3)	Rankings from Summers 2012
PAH change	Increase	5 to 50%	5% change in PAH considered within	
Probability of change in	No change	5 to -5 %	natural variation	Expert elicitation, Anchor QEA
PAH concentration due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
PAH post Bank Stabilization	Under NOAA's LEL for sediment	≤4,000 (ug/kg)	Same ranking from initial WS model	Prior probabilities determined by CPT via parent nodes
Probability of PAH concentration after bank stabilization is implemented (ug/kg)	Over NOAA's LEL for sediment	>4,000 (ug/kg)	(see Appendix 3)	Rankings from Summers 2012

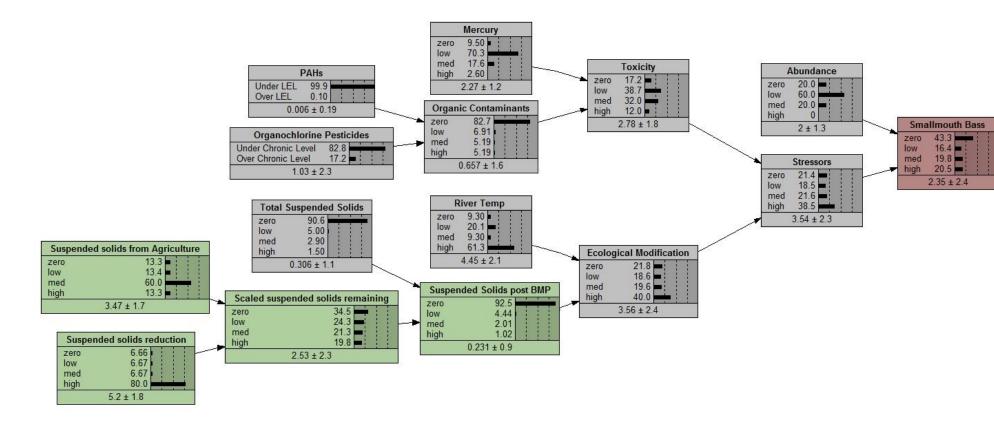
Organochlorine Pesticides	Lower than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Same ranking from initial WS model	Buchman 2008
Probability of Organochlorine pesticide concentration (ug/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	(see Appendix 3)	Rankings from Summers 2012
Organochlorine Pesticides change	Increase	5 to 50%	5% change in organochlorine pesticides considered within natural variation	
Probability of change in	No change	5 to -5 %		Expert elicitation, Anchor QEA
PAH concentration due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Organochlorine Pesticides post Bank Stabilization	Lower than NOAA's Chronic Level for water	*pesticide specific (ug/kg)		Frequencies determined by CPT
Probability of Organochlorine Pesticides concentration after bank stabilization is implemented (ug/kg)	Higher than NOAA's Chronic Level for water	*pesticide specific (ug/kg)	Same ranking from initial WS model (see Appendix 3)	via parent nodes Rankings from Summers 2012
River Temperature	Zero	14-19 °C		McCormick et al. 1977, Horak
	Low	11-14 and 19-22 °C	Same ranking from initial WS model	and Tanner 1964, Marcy 1976, Brett 1944, Carlander 1969,
Probability of river temp	Med	9-11 and 22-29 °C	(see Appendix 3)	Twomey et al. 1984
(°C)	High	<9 and >29 °C		Rankings from Summers 2012
River Temperature change	Increase	5 to 50%	5% change in river temp. considered within natural variation	
Drobobility of change in	No change	5 to -5 %		Expert elicitation, Anchor QEA
Probability of change in river temp due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
River Temperature post	Zero	14-19 °C		
Bank Stabilization	Low	11-14 and 19-22 °C	Same ranking from initial WS model	Prior probabilities determined by CPT via parent nodes
Probability of river temp bank stabilization is	Med	9-11 and 22-29 °C	(see Appendix 3)	Rankings from Summers 2012
implemented (°C)	High	<9 and >29 °C		Rankings norn Summers 2012
Stream Cover	Zero	25-85%		Twomey et al. 1984,
	Low	15-25% or 85-100%	Same ranking from initial WS model	Dence 1948, Probst 1982b
Probability of percent	Med	5-15%	(see Appendix 3)	_ 0.00 10 10, 110000 10020
submerged aquatic vegetation cover (%)	High	<5%		Rankings from Summers 2012

Stream Cover Change	Increase	5 to 50%	5% change in TSS considered within	
Probability of change in submerged aquatic	No change	5 to -5 %	natural variation	Expert elicitation, Anchor QEA
vegetation due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Stream Cover post Bank	Zero	25-85%		
Stabilization	Low	15-25% or 85-100%	Same ranking from initial model	Prior probabilities determined by CPT via parent nodes
Probability of submerged aquatic vegetation cover	Med	5-15%	(see Appendix 3)	
after bank stabilization is implemented (%)	High	<5%		Rankings from Summers 2012

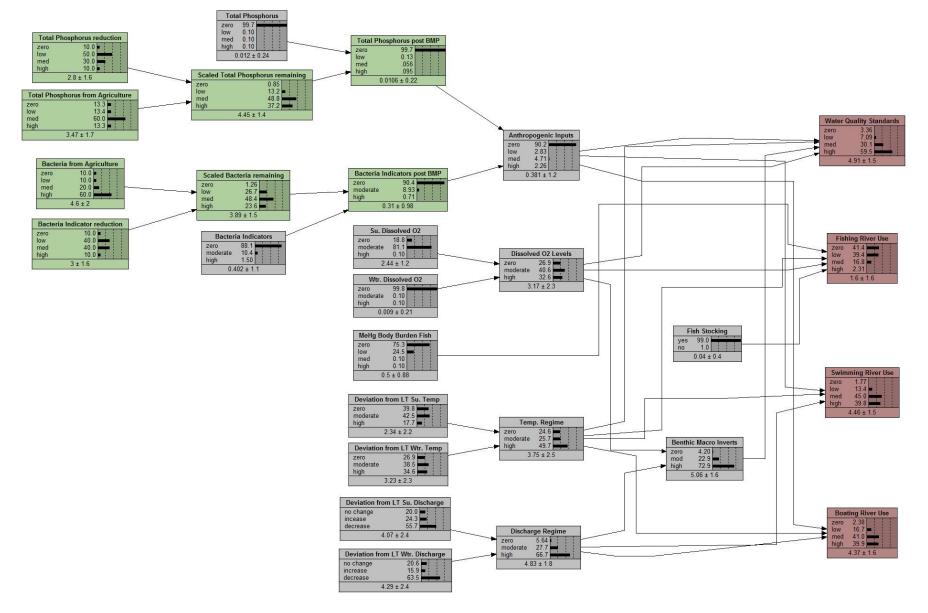

A13-5. Summary explanation of input parameters specific to bank stabilization management BNs for water quality endpoints (Water Quality Standards, and Fishing, Swimming, and Boating River Use). This includes parameters and definitions; states and associated ranges, and justification with corresponding references. Any variables that were carried over from the initial model without modifications are not included in the table, and it can be assumed the ranking scheme remains unchanged. Model parameterization for the initial WQ model can be found in **Appendix 4**.

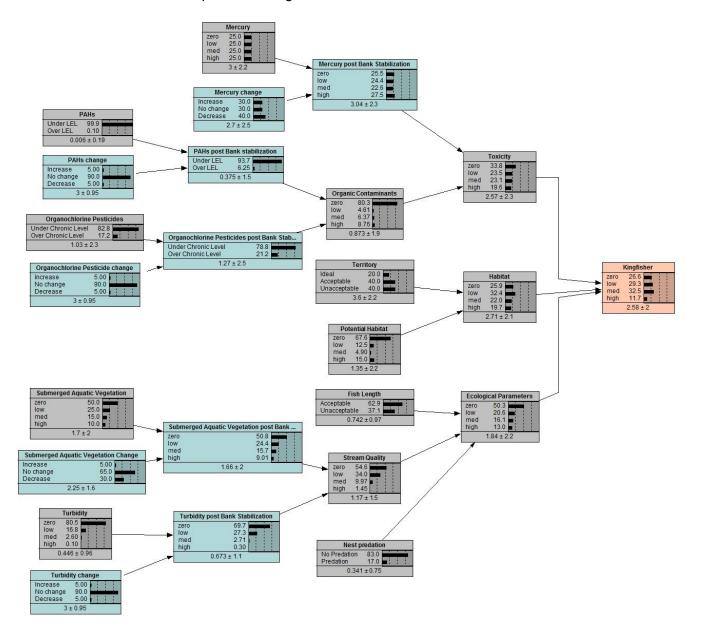

Parameters	States	Range	Justification	Data sources	
Total Phosphorus	Zero Low	<0.1 mg/L 0.1-0.3 mg/L	Same ranking from initial WQ model	Black et al. 2010 USEPA 2006 National Water Quality Assessment	
Probability of total phosphorus (mg/L)	Med	0.31-0.5 mg/L	(see Appendix 4)	Program, USGS Rankings from Ayre et al.	
	High	0.51-5.0 mg/L		Report 2013-1	
Total Phosphorus change	Increase	5 to 50%	5% change in TSS considered within		
Probability of change in total phosphorus due to bank	No change	5 to -5 %	natural variation Frequencies from expert elicitation	Expert elicitation, Anchor QEA	
stabilization (%)	Decrease	-5 to -50%	survey scenarios		
Total Phosphorus post Bank	Zero	<0.1 mg/L		Prior probabilities determined by CPT	
Stabilization	Low	0.1-0.3 mg/L	Same ranking from initial WQ model	via parent nodes	
Probability of total phosphorus after bank stabilization is	Med	0.31-0.5 mg/L	(see Appendix 4)	Rankings from Ayre et al.	
implemented (mg/L)	High	>0.51 mg/L		Report 2013-1	
Bacteria indicators	Zero	0-200 CFU/100 mL		VDEQ 2009	
Probability of fecal bacteria	Moderate	200-1000 CFU/100 mL	Same ranking from initial WQ model (see Appendix 4)	Rankings from Ayre et al.	
(CFU/100mL)	High	1000-2000 CFU/100 mL		Report 2013-1	
Bacteria indicators change	Increase	5 to 50%	5% change in TSS considered within natural variation		
Probability of change in bacteria indicators due to bank	No change	5 to -5 %	Frequencies from expert elicitation	Expert elicitation, Anchor QEA	
stabilization (%)	Decrease	-5 to -50%	survey scenarios		
Bacteria indicators post Bank	Zero	0-200 CFU/100 mL		Prior probabilities determined by CPT	
Stabilization	Moderate	200-1000 CFU/100 mL	Same ranking from initial WQ model	via parent nodes	
Probability of bacteria indicators after bank stabilization is	moderate		(see Appendix 4)	Rankings from Ayre et al.	
implemented (mg/L)	High	>1000 CFU/100 mL		Report 2013-1	

Summer Dissolved O ₂	Zero	9-15 mg/L		Pollino et al. 2007 USGS <i>(a,b,c,d)</i> NHD database
Probability of dissolved oxygen	Moderate	5-9 mg/L	Same ranking from initial WQ model (see Appendix 4)	
levels April-September (mg/L)	High	0-5 mg/L	(see Appendix 4)	Rankings from Ayre et al. Report 2013-1
Summer Dissolved O ₂ change	Increase	5 to 50%	5% change in TSS considered within	
Probability of change in summer	No change	5 to -5 %	natural variation	Expert elicitation, Anchor QEA
dissolved oxygen due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Summer Dissolved O₂post Bank Stabilization	Zero	>9 mg/L		Prior probabilities determined by CPT
Probability of summer dissolved	Madauata	5 0 m m/l	Same ranking from initial WQ model	via parent nodes
oxygen levels after bank	Moderate	5-9 mg/L	(see Appendix 4)	Rankings from Ayre et al.
stabilization is implemented (mg/L)	High	<5 mg/L		Report 2013-1
Winter Dissolved O ₂	Zero	9-22 mg/L		Pollino et al. 2007
Probability of dissolved oxygen	Moderate	5-9 mg/L	Same ranking from initial WQ model (see Appendix 4)	USGS (a,b,c,d) NHD database
levels October-March (mg/L)	High	0-5 mg/L		Rankings from Ayre et al. Report 2013-1
Winter Dissolved O ₂ change	Increase	5 to 50%	5% change in TSS considered within natural variation	
Probability of change in winter dissolved oxygen due to bank	No change	5 to -5 %	Frequencies from expert elicitation	Expert elicitation, Anchor QEA
stabilization (%)	Decrease	-5 to -50%	survey scenarios	
Winter Dissolved O₂ post Bank Stabilization	Zero	>9 mg/L		Prior probabilities determined by CPT via parent nodes
Probability of winter dissolved	Moderate	5-9 mg/L	Same ranking from initial WQ model (see Appendix 4)	
oxygen levels after bank stabilization is implemented (mg/L)	High	<5 mg/L		Rankings from Ayre et al. Report 2013-1
MeHg Body Burden Fish	Zero	<0.2 mg/kg		Dillon et al. 2010
	Low	0.21-1.1 mg/kg	Same ranking from initial WQ model	
Probability of fish fillet MeHg concentration (mg/kg)	Med	1.2-2.8 mg/kg	(see Appendix 4)	Rankings from summers 2012, Ayre et al. Report 2013-1
	High	>2.9 mg/kg		et al. Report 2013-1
Mercury Increase	Zero	0-162.5%	Based on porewater Hg monitoring	
Probability of increase in MeHg	Low	162.6-325%	values from bank stabilization pilot	Anchor QEA LLC et al. (2013)
fish fillet concentration due to	Med	325.1-487.5%	study	
bank stabilization (%)	High Zero	487.6-650% 0-10% (remaining)		Anchor QEA LLC et al. (2013)
	2610			AIICIUI QEA LLO EL al. (2013)

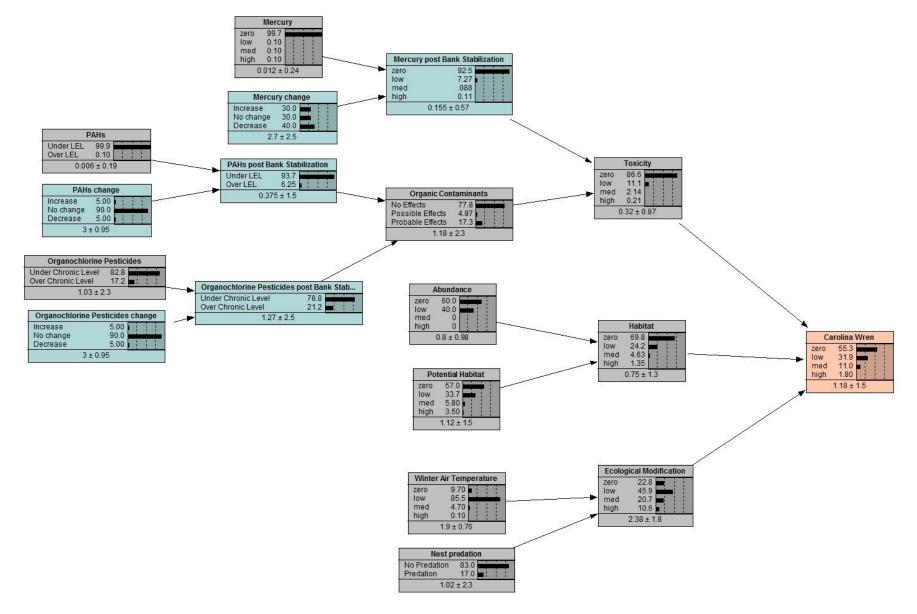

Mercury Remaining	Low	11-40%	Based on porewater Hg monitoring	
(decrease)	Med	41-70%	values from bank stabilization pilot study	
Probability of decrease in MeHg fish fillet concentration due to bank stabilization (%)	High	71-100%		
MeHg Body Burden Fish post Bank Stabilization	Zero	<0.3 mg/kg		Prior probabilities determined by CPT
	Low	0.3-1.0 mg/kg	Same ranking from initial WQ model	via parent nodes
Probability of MeHg fish fillet concentration after bank	Med	1.1-3.0 mg/kg	(see Appendix 4)	Daubin en franz Dummann 2010
stabilization is implemented (mg/kg)	High	>3.0 mg/kg		Rankings from Summers 2012.
Deviation from LT summer temp	No change	0-2 °C deviation	Same ranking from initial WQ model	Pollino et al. 2007 USGS <i>(a,b,c,d)</i> NHD database
Probability of deviation from 30- year seasonal average for river	Moderate	2-4 °C deviation	(see Appendix 4)	Rankings from Ayre et al.
temp from April-September (°C)	High	4-6 °C deviation		Report 2013-1
Deviation from LT summer temp due to Bank Stabilization	Increase	5 to 50%	5% change in TSS considered within natural variation	
Probability of summer temp deviation due to bank	No change	5 to -5 %	Frequencies from expert elicitation	Expert elicitation, Anchor QEA.
stabilization (%)	Decrease	-5 to -50%	survey scenarios	
Deviation from LT summer temp post Bank Stabilization	No change	0-2 °C deviation	Some replying from initial WO model	Prior probabilities determined by CPT
Probability of deviation from	Moderate	2-4 °C deviation	Same ranking from initial WQ model (see Appendix 4)	via parent nodes
summer temp after bank stabilization is implemented (°C)	High	>4 °C deviation		Rankings from Summers 2012
Deviation from LT winter temp	No change	0-2 °C deviation		Pollino et al. 2007 USGS <i>(a,b,c,d)</i> NHD database
Probability of deviation from 30- year seasonal average for river	Moderate	2-4 °C deviation	Same ranking from initial WQ model (see Appendix 4)	Rankings from Ayre et al.
temp from Oct-March (°C)	High	4-6 °C deviation		Report 2013-1
Deviation from LT winter temp due to Bank Stabilization	Increase	5 to 50%	5% change in TSS considered within natural variation	
Probability of winter temp deviation due to bank	No change	5 to -5 %		Expert elicitation, Anchor QEA
stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
	No change	0-2 °C deviation	Same ranking from initial WQ model	

Deviation from LT winter temp post Bank Stabilization	Moderate	2-4 °C deviation	(see Appendix 4)	Prior probabilities determined by CPT via parent nodes
Probability of deviation from winter temp after bank stabilization is implemented (°C)	High	>4 °C deviation		Rankings from Summers 2012.
Deviation from LT summer discharge	No change	76-125% deviation		Pollino et al. 2007 USGS <i>(a,b,c,d)</i> NHD database
Probability of deviation from 30-	Increase	126-175% deviation	Same ranking from initial WQ model (see Appendix 4)	
year seasonal average for discharge from April-Sept (%)	Decrease	25-75% deviation		Rankings from Ayre et al. Report 2013-1
Deviation from LT summer discharge due to Bank	Increase	5 to 50%	5% change in TSS considered within	
Stabilization	No change	5 to -5 %	natural variation	Expert elicitation, Anchor QEA
Probability of summer discharge deviation due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Deviation from LT summer discharge post Bank	No change	76-125% deviation		Prior probabilities determined by CPT
Stabilization	Increase	126-175% deviation	Same ranking from initial WQ model	via parent nodes
Probability of deviation from summer discharge after bank stabilization is implemented (%)	Decrease	25-75% deviation	(see Appendix 4)	Rankings from Ayre et al. Report 2013-1
Deviation from LT winter discharge	No change	76-125% deviation		Pollino et al. 2007
Probability of deviation from 30-	Increase	126-175% deviation	Same ranking from initial WQ model (see Appendix 4)	USGS (a,b,c,d) NHD database
year seasonal average for discharge from Oct-March (%)	Decrease	25-75% deviation		Rankings from Ayre et al. Report 2013-1
Deviation from LT winter discharge due to Bank	Increase	5 to 50%	5% change in TSS considered within	
Stabilization	No change	5 to -5 %	natural variation	Expert elicitation, Anchor QEA
Probability of deviation from winter discharge due to bank stabilization (%)	Decrease	-5 to -50%	Frequencies from expert elicitation survey scenarios	
Deviation from LT winter discharge post Bank	No change	76-125% deviation		Deles much chilities determine du COT
Stabilization	Increase	126-175% deviation	Same ranking from initial WQ model	Prior probabilities determined by CPT via parent nodes
Probability of deviation from winter discharge after bank stabilization is implemented (%)	Decrease	25-75% deviation	(see Appendix 4)	Rankings from Summers 2012

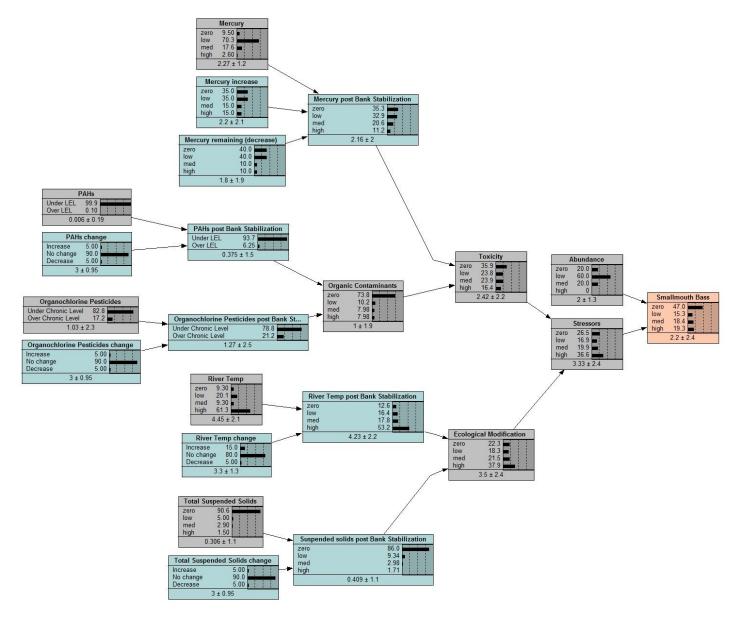



A14-1. Bayesian network for Ag BMPs for Belted Kingfisher, Region 2.

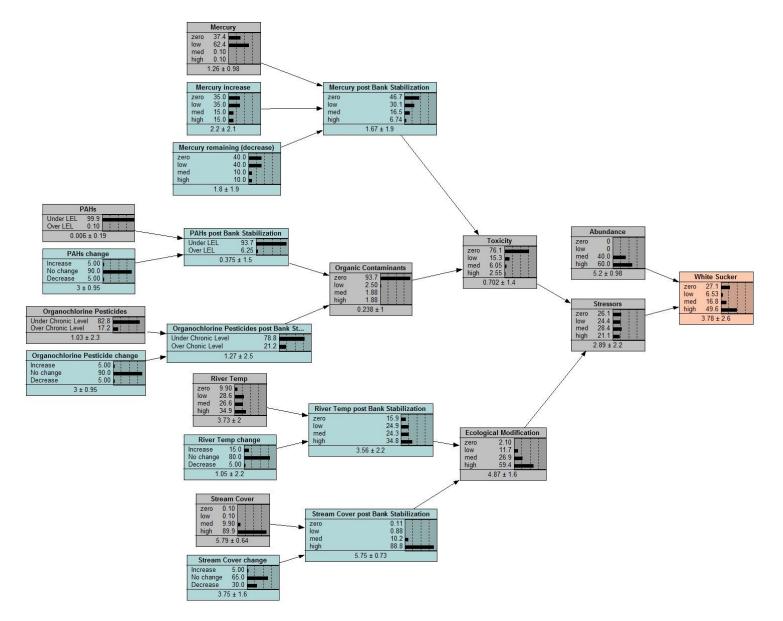
A14-6. Bayesian network for Ag BMPs for smallmouth bass, Region 2.

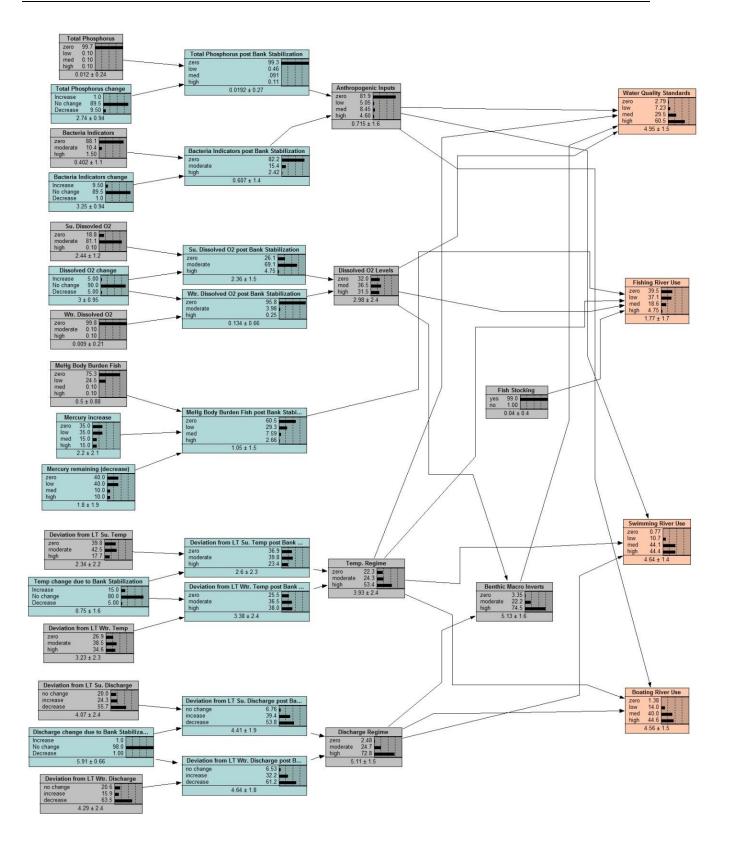


A14-11. Bayesian network for Ag BMPs for water quality endpoints, Region 2.



Appendix 15. Bayesian networks for the Bank Stabilization management scenario for affected endpoints for Region 2.


A15-1. Bayesian network for Bank Stabilization for Belted Kingfisher, Region 2


A15-2. Bayesian network for Bank Stabilization for Carolina Wren, Region 2.

A15-3. Bayesian network for Bank Stabilization for smallmouth bass, Region 2.

A15-4. Bayesian network for Bank Stabilization for white sucker, Region 2.

A15-5. Bayesian network for Bank Stabilization for water quality endpoints, Region 2.

Appendix 16. Bank stabilization management scenarios.

In addition to the risk that was predicted from the bank stabilization management option, we also conducted additional scenarios. These scenarios represent the Best Case and Worst Case Scenarios of possible risk with the implementation of this management option. For the Worst Case Scenario, we set all of the bank stabilization nodes to the high risk level with a risk value of 6 and calculated the change in risk between the initial risk estimates and the new risk estimates. The same process was completed for the Best Case Scenario except the nodes were set to a risk value of 0. For a more detailed description of this process, see Section 3.5.3.

A16-1. Change in likelihood of risk states to endpoints with the Worst Case Scenario. This scenario represents the upper bound of risk for the bank stabilization management option.

Belted Kingfisher	Zero	Low	Med	High	Carolina Wren	Zero	Low	Med	High
Region 2	-7.3	-0.8	3.5	4.5	R-2	-5.5	2.9	2.0	0.6
R-3	-10.8	3.3	5.2	2.2	R-3	-4.7	-0.5	3.7	1.6
R-4	-9.1	1.2	4.5	3.4	R-4	-2.2	-0.1	0.4	1.9
R-5	-8.2	2.7	2.7	2.9	R-5	-2.5	-0.5	0.7	2.2
R-6	-11.5	3.8	5.7	2.0	R-6	-4.1	-1.3	2.6	2.8
Smallmouth Bass	Zero	Low	Med	High	White Sucker	Zero	Low	Med	High
R-2	-11	0.9	2.8	7.3	R-2	-9.3	-0.3	-1.1	10.6
R-3	-15.2	1.0	3.8	10.4	R-3	-13.9	0.7	1.6	11.7
R-4	-17.9	0.2	1.0	16.6	R-4	-18.6	1.7	3.2	13.6
R-5	-23.5	-0.2	-1.2	24.8	R-5	-13.0	1.9	3.8	7.3
R-6	-19.8	1.7	4.4	13.7	R-6	-10.9	1.2	3.0	6.9
WQ- Standards	Zero	Low	Med	High	WQ- Fishing	Zero	Low	Med	High
	Zero -2.2	Low -5.1	Med -9.6	High 16.9	-	Zero -17.0	Low -1.1	Med 11.3	High 6.9
Standards				-	Fishing				
Standards R-2	-2.2	-5.1	-9.6	16.9	Fishing R-2	-17.0	-1.1	11.3	6.9
Standards R-2 R-3	-2.2 -3.1	-5.1 -7.1	-9.6 -10.3	16.9 20.6	Fishing R-2 R-3	-17.0 -23.5	-1.1 -6.7	11.3 12.0	6.9 18.2
Standards R-2 R-3 R-4	-2.2 -3.1 -3.2	-5.1 -7.1 -6.7	-9.6 -10.3 -10.0	16.9 20.6 19.9	Fishing R-2 R-3 R-4	-17.0 -23.5 -21.0	-1.1 -6.7 -9.2	11.3 12.0 10.0	6.9 18.2 20.1
Standards R-2 R-3 R-4 R-5	-2.2 -3.1 -3.2 -2.2	-5.1 -7.1 -6.7 -5.3	-9.6 -10.3 -10.0 -9.2	16.9 20.6 19.9 16.7	Fishing R-2 R-3 R-4 R-5	-17.0 -23.5 -21.0 -20.5	-1.1 -6.7 -9.2 -7.1	11.3 12.0 10.0 11.2	6.9 18.2 20.1 16.5
Standards R-2 R-3 R-4 R-5 R-6 WQ-	-2.2 -3.1 -3.2 -2.2 -3.5	-5.1 -7.1 -6.7 -5.3 -7.7	-9.6 -10.3 -10.0 -9.2 -9.2	16.9 20.6 19.9 16.7 20.5	Fishing R-2 R-3 R-4 R-5 R-6 WQ-	-17.0 -23.5 -21.0 -20.5 -19.2	-1.1 -6.7 -9.2 -7.1 -6.4	11.3 12.0 10.0 11.2 8.4	6.9 18.2 20.1 16.5 17.3
Standards R-2 R-3 R-4 R-5 R-6 WQ- Swimming	-2.2 -3.1 -3.2 -2.2 -3.5 Zero	-5.1 -7.1 -6.7 -5.3 -7.7 Low	-9.6 -10.3 -10.0 -9.2 -9.2 Med	16.9 20.6 19.9 16.7 20.5 High	Fishing R-2 R-3 R-4 R-5 R-6 WQ- Boating	-17.0 -23.5 -21.0 -20.5 -19.2 Zero	-1.1 -6.7 -9.2 -7.1 -6.4	11.3 12.0 10.0 11.2 8.4 Med	6.9 18.2 20.1 16.5 17.3 High
Standards R-2 R-3 R-4 R-5 R-6 WQ- Swimming R-2	-2.2 -3.1 -3.2 -2.2 -3.5 Zero -0.6	-5.1 -7.1 -6.7 -5.3 -7.7 Low	-9.6 -10.3 -10.0 -9.2 -9.2 Med -7.7	16.9 20.6 19.9 16.7 20.5 High 13.9	Fishing R-2 R-3 R-4 R-5 R-6 WQ- Boating R-2	-17.0 -23.5 -21.0 -20.5 -19.2 Zero -1.0	-1.1 -6.7 -9.2 -7.1 -6.4 Low -7.5	11.3 12.0 10.0 11.2 8.4 Med -4.0	6.9 18.2 20.1 16.5 17.3 High 12.5
Standards R-2 R-3 R-4 R-5 R-6 WQ- Swimming R-2 R-3	-2.2 -3.1 -3.2 -2.2 -3.5 Zero -0.6 -0.5	-5.1 -7.1 -6.7 -5.3 -7.7 Low -5.7 -5.2	-9.6 -10.3 -10.0 -9.2 -9.2 Med -7.7 -8.6	16.9 20.6 19.9 16.7 20.5 High 13.9 14.2	Fishing R-2 R-3 R-4 R-5 R-6 WQ- Boating R-2 R-3	-17.0 -23.5 -21.0 -20.5 -19.2 Zero -1.0 -0.9	-1.1 -6.7 -9.2 -7.1 -6.4 Low -7.5 -7.5	11.3 12.0 10.0 11.2 8.4 Med -4.0 -4.9	6.9 18.2 20.1 16.5 17.3 High 12.5 13.2

Belted Kingfisher	Zero	Low	Med	High	Carolina Wren	Zero	Low	Med	High
Region 2	4.0	0.1	-2.3	-1.9	R-2	2.8	-1.7	-0.9	-0.2
R-3	4.9	-1.7	-2.4	-0.8	R-3	3.0	-0.2	-2.1	-0.7
R-4	4.1	-1.0	-21.8	-1.2	R-4	1.2	-0.1	-0.4	-0.6
R-5	3.1	-1.1	-0.8	-1.1	R-5	1.0	0.0	-0.6	-0.5
R-6	5.6	-2.1	-2.7	-0.9	R-6	2.5	0.8	-2.0	-1.3
Smallmouth Bass	Zero	Low	Med	High	White Sucker	Zero	Low	Med	High
R-2	10.4	-1.8	-3.0	-5.5	R-2	8.1	-0.4	-0.9	-6.9
R-3	11.3	-2.1	-3.4	-5.9	R-3	7.9	-1.0	-1.8	-5.1
R-4	15.6	-1.4	-2.6	-11.7	R-4	7.9	-1.1	-1.8	-5.1
R-5	10.9	-0.1	-0.1	-10.7	R-5	6.4	-1.4	-2.1	-2.9
R-6	12.1	-1.9	-3.1	-7.1	R-6	6.4	-1.4	-2.0	-2.9
WQ- Standards	Zero	Low	Med	High	WQ- Fishing	Zero	Low	Med	High
	Zero 9.7	Low 8.0	Med 1.5	High -19.1		Zero 18.1	Low -5.4	Med -9.7	High -3.0
Standards				-	Fishing				-
Standards R-2	9.7	8.0	1.5	-19.1	Fishing R-2	18.1	-5.4	-9.7	-3.0
Standards R-2 R-3	9.7 9.7	8.0 6.7	1.5 0.0	-19.1 -16.3	Fishing R-2 R-3	18.1 17.3	-5.4 0.2	-9.7 -10.8	-3.0 -6.7
Standards R-2 R-3 R-4	9.7 9.7 8.3	8.0 6.7 7.4	1.5 0.0 1.2	-19.1 -16.3 -16.8	Fishing R-2 R-3 R-4	18.1 17.3 19.6	-5.4 0.2 1.3	-9.7 -10.8 -12.7	-3.0 -6.7 -8.2
Standards R-2 R-3 R-4 R-5	9.7 9.7 8.3 8.6	8.0 6.7 7.4 7.0	1.5 0.0 1.2 1.6	-19.1 -16.3 -16.8 -17.3	Fishing R-2 R-3 R-4 R-5	18.1 17.3 19.6 18.4	-5.4 0.2 1.3 -0.3	-9.7 -10.8 -12.7 -11.0	-3.0 -6.7 -8.2 -7.0
Standards R-2 R-3 R-4 R-5 R-6 WQ-	9.7 9.7 8.3 8.6 10.3	8.0 6.7 7.4 7.0 6.0	1.5 0.0 1.2 1.6 -1.1	-19.1 -16.3 -16.8 -17.3 -15.3	Fishing R-2 R-3 R-4 R-5 R-6 WQ-	18.1 17.3 19.6 18.4 16.2	-5.4 0.2 1.3 -0.3 2.8	-9.7 -10.8 -12.7 -11.0 -10.3	-3.0 -6.7 -8.2 -7.0 -8.7
Standards R-2 R-3 R-4 R-5 R-6 WQ- Swimming	9.7 9.7 8.3 8.6 10.3 Zero	8.0 6.7 7.4 7.0 6.0 Low	1.5 0.0 1.2 1.6 -1.1 Med	-19.1 -16.3 -16.8 -17.3 -15.3 High	Fishing R-2 R-3 R-4 R-5 R-6 WQ- Boating	18.1 17.3 19.6 18.4 16.2 Zero	-5.4 0.2 1.3 -0.3 2.8 Low	-9.7 -10.8 -12.7 -11.0 -10.3 Med	-3.0 -6.7 -8.2 -7.0 -8.7 High
Standards R-2 R-3 R-4 R-5 R-6 WQ- Swimming R-2	9.7 9.7 8.3 8.6 10.3 Zero 3.1	8.0 6.7 7.4 7.0 6.0 Low 5.2	1.5 0.0 1.2 1.6 -1.1 Med -1.4	-19.1 -16.3 -16.8 -17.3 -15.3 High -6.9	Fishing R-2 R-3 R-4 R-5 R-6 WQ- Boating R-2	18.1 17.3 19.6 18.4 16.2 Zero 2.8	-5.4 0.2 1.3 -0.3 2.8 Low 4.3	-9.7 -10.8 -12.7 -11.0 -10.3 Med 1.2	-3.0 -6.7 -8.2 -7.0 -8.7 High -8.3
Standards R-2 R-3 R-4 R-5 R-6 WQ- Swimming R-2 R-3	9.7 9.7 8.3 8.6 10.3 Zero 3.1 3.0	8.0 6.7 7.4 7.0 6.0 Low 5.2 5.7	1.5 0.0 1.2 1.6 -1.1 Med -1.4 -0.2	-19.1 -16.3 -16.8 -17.3 -15.3 High -6.9 -8.5	Fishing R-2 R-3 R-4 R-5 R-6 WQ- Boating R-2 R-3	18.1 17.3 19.6 18.4 16.2 Zero 2.8 2.8	-5.4 0.2 1.3 -0.3 2.8 Low 4.3 4.3	-9.7 -10.8 -12.7 -11.0 -10.3 Med 1.2 2.3	-3.0 -6.7 -8.2 -7.0 -8.7 High -8.3 -9.5

A16-2. Change in likelihood of risk state to endpoints with Best Case Scenario. This scenario represents the lower risk bound for the bank stabilization management scenario.

Appendix 17. Sensitivity Analysis: entropy reduction results for adaptive management.

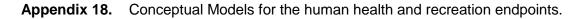
Parent nodes were included in the lists. For example, Deviation from LT Summer Discharge or Deviation from LT Winter Discharge were used rather than Discharge Regime. Nodes that have the least number of connections to the endpoint are more likely to have greater influence over the final value of the endpoint. Management may choose to target Discharge Regime as a whole, but it is important to know what component of the Discharge Regime is driving the response.

	Input Parameter	Entropy Reduction
Belted Kingfisher		
	Mercury	0.1484
Region 2	Fish Length	0.0707
	Potential Habitat	0.0434
	Mercury	0.1568
Region 3	Fish Length	0.0951
	Potential Habitat	0.0399
	Mercury	0.1934
Region 4	Fish Length	0.0760
	Territory	0.0250
	Mercury	0.2264
Region 5	Fish Length	0.0785
	Territory	0.0228
	Fish Length	0.1018
Region 6	Mercury	0.0456
	Territory	0.0431
Smallmouth Bass		
	River Temp	0.0277
Region 2	Mercury	0.0177
	Organochlorine Pesticides	0.0008
	River Temp	0.0146
Region 3	Mercury	0.0059
	Organochlorine Pesticides	0.0029
	River Temp	0.0330
Region 4	Mercury	0.0151
	Organochlorine Pesticides	0.0071
	River Temp	0.0525
Region 5	Mercury	0.0418
	Total Suspended Solids	0.0024
	River Temp	0.0493
Region 6	Mercury	0.0151
-	Organochlorine Pesticides	0.0036

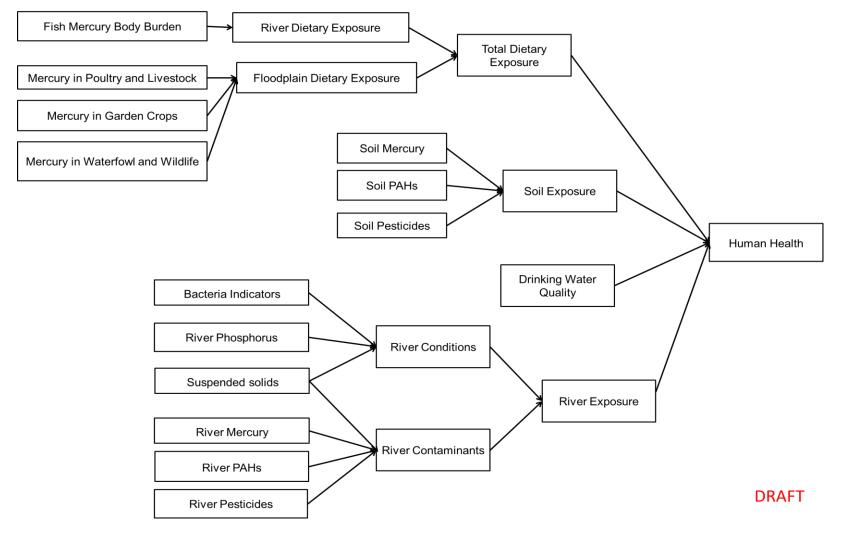
A17-1. Entropy Reduction (mutual information) for Ag BMPs.

Water Quality Standa	rds	
	Summer Dissolved O ₂	0.0943
Region 2	Deviation from Winter Temp	0.0123
	Deviation from Summer Temp	0.0093
Region 3	Summer Dissolved O ₂	0.1135
	Bacterial Indicators	0.0237
	Deviation from Winter Discharge	0.0156
	Summer Dissolved O ₂	0.1675
Region 4	Deviation from Winter Discharge	0.0210
	Deviation from Summer Discharge	0.0201
	Summer Dissolved O ₂	0.1153
Region 5	Bacteria Indicators	0.0212
	Deviation from Winter Discharge	0.0111
	Summer Dissolved O ₂	0.1137
Region 6	Deviation from LT Winter Discharge	0.0219
	Deviation from LT Summer Discharge	0.0171
Swimming River Use		
	Deviation from Winter Temp	0.0391
Region 2	Deviation from Summer Temp	0.0316
	Deviation from Summer Discharge	0.0231
	Deviation from Winter Temp	0.0368
Region 3	Bacterial Indicators	0.0342
	Deviation from Summer Temp	0.0271
	Deviation from Summer Discharge	0.0483
Region 4	Deviation from Winter Discharge	0.0430
Region 4	Deviation from Summer Temperature & Deviation from Winter Temperature	0.0388
	Bacterial Indicators	0.0359
Region 5	Deviation from Winter Temp	0.0318
	Deviation from Summer Temp	0.0301
	Deviation from Summer Temp	0.0333
Region 6	Deviation from Winter Temp	0.0333
	Deviation from Winter Discharge	0.0198
Boating River Use		
	Deviation from Winter Temp	0.0577
Region 2	Deviation from Summer Temp	0.0436
	Bacterial Indicators	0.0136
	Deviation from Winter Temp	0.0566
Region 3	Deviation from Summer Temp	0.0411
	Bacterial Indicators	0.0306
	Deviation from Winter Temp	0.0532
Region 4	Deviation from Summer Temp	0.0532
	Deviation from Summer Discharge	0.0276
Region 5	Deviation from Winter Temp	0.0423

	Deviation from Summer Temp	0.0374
	Bacteria Indicators	0.0359
	Deviation from Summer Temp	0.0421
Region 6	Deviation from Winter Temp	0.0421
	Deviation from Winter Discharge	0.0135

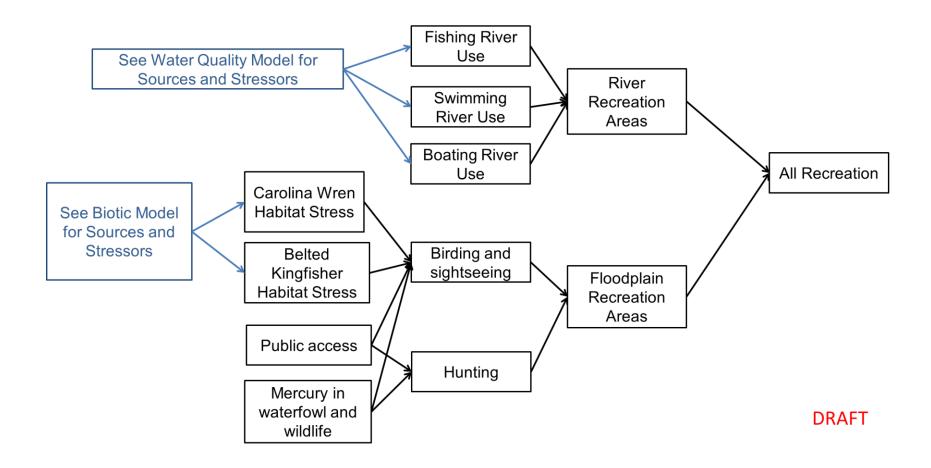

Table A17-2. Entropy reduction (mutual information) for bank stabilization.

	Input Parameter	Entropy Reduction
Belted Kingfisher		
	Mercury	0.1287
Region 2	Fish Length	0.0693
	Potential Habitat	0.0425
	Mercury	0.1415
Region 3	Fish Length	0.0924
	Potential Habitat	0.0394
	Mercury	0.1780
Region 4	Fish Length	0.0742
	Territory	0.0250
	Mercury	0.2093
Region 5	Fish Length	0.0765
	Territory	0.0233
	Fish Length	0.0968
Region 6	Territory	0.0426
	Mercury	0.0390
Carolina Wren		
	Nest Predation	0.0635
Region 2	Potential Habitat	0.0554
	Winter Air Temperature	0.0200
	Mercury	0.0904
Region 3	Nest Predation	0.0553
	Potential Habitat	0.0181
	Mercury	0.0851
Region 4	Nest Predation	0.0336
	Winter Air Temperature	0.0121
	Mercury	0.0953
Region 5	Nest Predation	0.0367
	Potential Habitat	0.0122
	Mercury	0.0738
Region 6	Nest Predation	0.0416
	Winter Air Temperature	0.0135

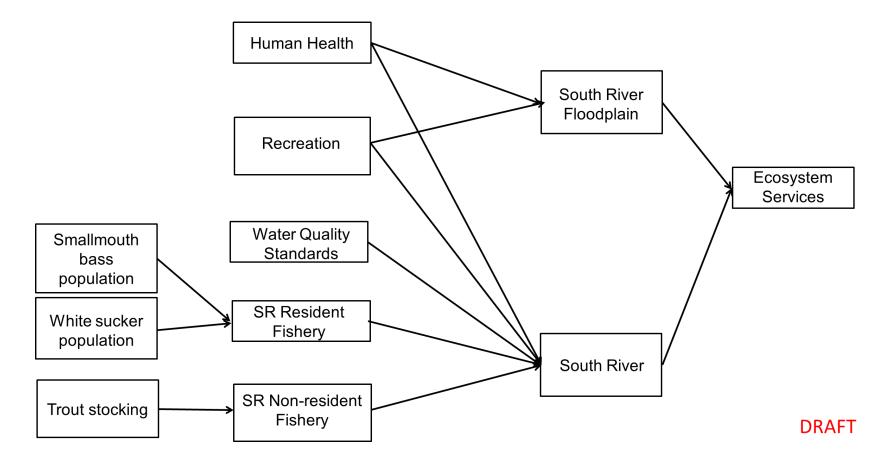

Smallmouth Bass		
	River Temp	0.0221
Region 2	Mercury remaining (decrease)	0.0053
	Mercury	0.0040
Region 3	River Temp	0.0252
	Mercury remaining (decrease)	0.0164
	Mercury	0.0026
	River Temp	0.0444
Region 4	Mercury remaining (decrease)	0.0340
_	Mercury	0.0110
	River Temp	0.0570
Region 5	Mercury remaining (decrease)	0.0398
	Mercury	0.0139
	River Temp	0.0497
Region 6	Mercury remaining (decrease)	0.0205
	Organochlorine Pesticides	0.0026
White Sucker		
	River Temp	0.0458
Region 2	Stream Cover	0.0066
	Mercury	0.0014
	River Temp	0.0535
Region 3	Stream Cover	0.0529
	Mercury remaining (decrease)	0.0028
	River Temp	0.0769
Region 4	Stream Cover	0.0169
	Mercury remaining (decrease)	0.0028
	River Temp	0.0304
Region 5	Stream Cover	0.0124
	Mercury increase	0.0014
	River Temp	0.0303
Region 6	Stream Cover	0.0171
	PAHs Change	0.0009
Water Quality Standar		
	Summer Dissolved O ₂	0.0481
Region 2	Bacterial Indicators	0.0101
	Deviation from Winter Temp	0.0089
_ .	Summer Dissolved O ₂	0.0587
Region 3	Bacterial Indicators	0.0344
	Deviation from Winter Temp	0.0091
	Summer Dissolved O ₂	0.0753
Region 4	Deviation from Winter Temp	0.0083
	Deviation from Summer Temp	0.0083
Region 5	Summer Dissolved O ₂	0.0600
	Bacterial Indicators	0.0315

	Deviation from Winter Temp	0.0068
	Summer Dissolved O ₂	0.0606
Region 6	Bacterial Indicators	0.0139
	Deviation from Winter Temp & Deviation	0.0139
	from Summer Temp	0.0071
Fishing River Use		
	Summer Dissolved O ₂	0.0496
Region 2	MeHg Body Burden Fish	0.0285
	Deviation from Winter Temp	0.0135
	Summer Dissolved O ₂	0.0628
Region 3	MeHg Body Burden Fish	0.0277
5	Deviation from Winter Temp	0.0189
	Summer Dissolved O ₂	0.0594
Region 4	MeHg Body Burden Fish	0.0176
J	Mercury increase	0.0163
	Summer Dissolved O ₂	0.0516
Region 5	Mercury increase	0.0212
	Deviation from Winter Temp	0.0118
	Summer Dissolved O ₂	0.0509
Deview 0	Mercury increase	0.0353
Region 6	Deviation from Winter Temp & Deviation from Summer Temp	0.0126
Swimming River Use	· · · ·	
_	Deviation from Winter Temp	0.0280
Region 2	Bacteria Indicators	0.0232
	Deviation from Summer Temp	0.0226
	Bacteria Indicators	0.0498
Region 3	Deviation from Winter Temp	0.0259
	Deviation from Summer Temp	0.0194
		0.013-
Region 4	Deviation from Winter Temp	0.0293
1	Deviation from Winter Temp Deviation from Summer Temp	
	•	0.0293
	Deviation from Summer Temp	0.0293 0.0293
Region 5	Deviation from Summer Temp Temp Change due to Bank Stabilization	0.0293 0.0293 0.0030
Region 5	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators	0.0293 0.0293 0.0030 0.0518
Region 5	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators Deviation from Winter Temp	0.0293 0.0293 0.0030 0.0518 0.0240
Region 5 Region 6	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators Deviation from Winter Temp Deviation from Summer Temp	0.0293 0.0293 0.0030 0.0518 0.0240 0.0231
	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators Deviation from Winter Temp Deviation from Summer Temp Deviation from Summer Temp	0.0293 0.0293 0.0030 0.0518 0.0240 0.0231 0.0253
	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators Deviation from Winter Temp Deviation from Summer Temp Deviation from Summer Temp Deviation from Winter Temp	0.0293 0.0293 0.0030 0.0518 0.0240 0.0231 0.0253 0.0253
Region 6	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators Deviation from Winter Temp Deviation from Summer Temp Deviation from Summer Temp Deviation from Winter Temp	0.0293 0.0293 0.0030 0.0518 0.0240 0.0231 0.0253 0.0253
Region 6	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators Deviation from Winter Temp Deviation from Summer Temp Deviation from Summer Temp Deviation from Winter Temp Bacterial Indicators	0.0293 0.0293 0.0030 0.0518 0.0240 0.0231 0.0253 0.0253 0.0253 0.0189
Region 6 Boating River Use	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators Deviation from Winter Temp Deviation from Summer Temp Deviation from Summer Temp Bacterial Indicators Deviation from Winter Temp	0.0293 0.0293 0.0030 0.0518 0.0240 0.0231 0.0253 0.0253 0.0253 0.0189
Region 6 Boating River Use	Deviation from Summer Temp Temp Change due to Bank Stabilization Bacteria Indicators Deviation from Winter Temp Deviation from Summer Temp Deviation from Winter Temp Bacterial Indicators Deviation from Winter Temp Deviation from Summer Temp	0.0293 0.0293 0.0030 0.0518 0.0240 0.0231 0.0253 0.0253 0.0253 0.0189

	Deviation from Summer Temp	0.0292
Region 4	Deviation from Winter Temp	0.0387
	Deviation from Summer Temp	0.0387
	Temp Change due to Bank Stabilization	0.0034
Region 5	Bacterial Indicators	0.0512
	Deviation from Winter Temp	0.0309
	Deviation from Summer Temp	0.0274
	Deviation from Summer Temp	0.0309
Region 6	Deviation from Winter Temp	0.0309
	Bacterial Indicators	0.0178



Conceptual Model for Human Health



A18-1. Human Health Conceptual Model.

Conceptual Model for Recreation

A18-2. Recreation Conceptual Model.

Conceptual Model for Human-Eco Integration - Ecosystem Services Model

A18-3. Ecosystem Services Conceptual Model.